PROVINCIA DI PESCARA SETTORE I - TECNICO

Edilizia Scolastica e Masterplan competenti

"Lavori di realizzazione polo didattico e laboratorio Liceo MIBE "Misticoni-Bellisario" viale Einaudi Pescara"

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA

Dott.Geol. Martin POMPOSO

Civitella Casanova, contrada Pettorano, 36 — 65010 (PE), Cell. +39 392—5705714 e—mail: geologo.pomposomartin@gmail.com, PEC: martin.pomposo@arubapec.it; P. IVA 02251610685 — C.F. PMPMTN90B19G438H.

IL GE/01008
Dott.Ceol. Martin POMPOSO
ROW STAP STAP

RIFERIMENTO ELABORATO:				DATA:	REVISI	ONE:		
						NOVEMBRE 2022	0	NOVEMBRE 2022
Project M.	N° Commessa	Anno Fase	N° progr.	Rev.	Rif. Archivio		1	
						SCALA:	- '	
/	000026	2 2 //	1012121	0			2	
/		- - / /	$ \cup \angle \angle $				3	
					1	1		1

CONTROLLATO:	Dott. Geol. POMPOSO Martin	TAV.
APPROVATO:	Dott. Geol. POMPOSO Martin	UI
R.U.P.:	ing. PAOLINI Raffaella	

VISTO DELLA COMMITTENTE:

SOMMARIO

1.	PREMESSA	. 3
2.	METODOLOGIA	. 5
3.	QUADRO NORMATIVO DI RIFERIMENTO	. 7
4.	INQUADRAMENTO AMMINISTRATIVO - GEOGRAFICO	10
5.	INQUADRAMENTO GEOLOGICO	18
5.	1. ASSETTO GEOLOGICO LOCALE	21
6.	INQUADRAMENTO GEOMORFOLGICO	27
6.	1. ASSETTO GEOMORFOLOGICO LOCALE	30
7.	IDROLOGIA E IDROGEOLOGIA	1 0
7.	IDROLOGIA ED IDROGEOLOGIA LOCALE	45
8.	MODELLO STRATIGRAFICO	1 7
9.	INQUADRAMENTO SISMOLOGICO	50
9.	1. SUSCETTIBILITÀ ALLA LIQUEFAZIONE	55
10.	ANALISI DI COMPATIBILITÀ GEOMORFOLOGICA	30
10	0.1. GEOLOGIA DI DETTAGLIO	60
10	0.2. GEOMORFOLOGIA DI DETTAGLIO	62
10	0.3. ANALISI DELLA SISMICITÀ LOCALE	62
10	0.4. CONDIZIONI IDRAULICHE	63
10	0.5. INDAGINI GEOTECNICHE E GEOFISICHE	64
10	0.6. DOCUMENTAZIONE VEGETALE	64
10	0.7. VINCOLI TERRITORIALI	65
10	D.8. ANALISI DELLA PERICOLOSITÀ	65
1.	1. IDONEITÀ TERRITORIALE	67
2.	CONCLUSIONI	86
3.	BIBLIOGRAFIA E SITOGRAFIA	71

- ALLEGATI

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

1. PREMESSA

L'Amministrazione Provinciale di Pescara ha affidato al sottoscritto un incarico per uno studio di compatibilità geomorfologica a supporto dei "Lavori di realizzazione polo didattico e laboratorio Liceo MIBE "Misticoni-Bellisario" viale Einaudi Pescara".

Tale studio, è stato redatto come richiesto, in conformità delle LINEE GUIDA REGIONALI – versione 1.0 Allegato A, con deliberazione n. 108 del 22/02/2018".

Il presente studio è finalizzato ad una valutazione delle seguenti caratteristiche:

- Le litologie affioranti;
- Ricostruzione di un modello geologico locale;
- Ricostruzione di un modello geomorfologico locale;
- Ricostruzione di un modello idrologico ed idrogeologico locale.
- Ricostruzione di un modello sismico locale;
- Analisi sulle indagini geognostiche, geotecniche e sismiche;
- Valutazione della pericolosità di base.

Per suddetto progetto, vengono utilizzate diverse campagna indagini. La prima è costituita da n.1 prove penetrometriche dinamiche superpesanti (DPSH), n.1 sondaggio geognostico a carotaggio continuo con prelievo di n. 2 campioni indisturbati, ed esecuzione di n.1 prova di sismica superficiale di tipo MASW. Tale rapporto sulle indagini, con le specifiche delle attrezzature utilizzate, è stato effettuato dalla Società Geotecnica Ricci, riportato in allegato della presente relazione.

In aggiunta, una prova penetrometrica statica (C.P.T.) spinta fino a 35.60 metri dal p.c. e n.1 prelievo di campione indisturbato sottoposto a prove di laboratorio. Tale campagna integrativa di indagini, è stata effettuata dalla Società Geoland s.a.s.; in allegato si riportano i risultati e le specifiche delle attrezzature utilizzate.

Il sito di progetto, si colloca sul settore meridionale del territorio comunale di Pescara, identificato nel Foglio catastale 31 del Comune di Pescara Particella 3528.

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Dott. Geol. Martin Pomposo

Per tale studio, vengono ora utilizzate informazioni e dati da riferire a rilievi geologici e geomorfologici di superficie, studi ed indagini precedentemente elencate, nonché dalle conoscenze geologiche dello scrivente.

Infine, sono stati consultati gli studi di Microzonazione Sismica di livello 1.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposo@arubapec.it;
PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

2. METODOLOGIA

Per ricostruire un modello Geologico ed Idrogeologico dell'area di studio è stato indispensabile redigere un programma di lavoro riportato di seguito:

- Sopralluogo preliminare;
- Ricerca bibliografica di materiale inerente (cartografie, vincolistica ecc.);
- Ricerca di materiale da archivi propri (Indagini e studi pregressi in aree limitrofe; ove presenti);
- Rilievo Geologico e Geomorfologico di superficie;
- Studio ed analisi della campagna indagine geognostica, geotecnica e geofisica;
- Eventuale campagna di indagini integrativa;
- Elaborazione delle indagini e dati bibliografici;
- Creazione di cartografia georeferenziata;
- Ricostruzione del modello Geologico, Geomorfologico ed Idrogeologico dell'area;
- Redazione di una relazione conclusiva.

Riassunto indagini geognostiche, geotecniche e sismiche di riferimento:

indagini geognostiche e geotecniche:

Sondaggio	Profondità	Latitudine	Longitudine	Prove in	Dati sondaggio
	dal p.c. (m)			foro	
S1	-15.0	42°26'47.80"N	14°12'39.18"E	Prelievo n.2	Geotecnica Ricci
				campioni	s.r.l. 23.03.2011

Prove penetrometriche dinamiche:

Identificativo	Profondità dal p.c. (m)	Latitudine	Longitudine	Dati prova
DPSH_1	-10.0	42°26'47.30"N	14°12'37.67"E	Geotecnica Ricci
				s.r.l. 07.03.2011

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
	Cell. +39 392-5705714	
	e-mail: geologo.pomposomartin@gmail.com;	5/70
	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Riassunto campagne indagini geofisiche:

Sigla	Data	Coordinate WGS84	Dati prova
MASW1	05.04.2011	42°26'47.47"N - 14°12'39.33"E	Geotecnica Ricci s.r.l. 07.03.2011

Riassunto indagini geotecniche e prove di laboratorio integrative:

indagini geotecniche integrative:

Sondaggio	Profondità	Latitudine	Longitudine	Prove in	Dati sondaggio
	dal p.c. (m)			foro	
CPT1	-35.60	42°26'49.01"N	14°12'35.54"E	Prelievo n.1	Geoland s.a.s.
				campione	febbraio 2021

Tutte le indagini sono riportate in allegato alla presente relazione insieme alla descrizione della documentazione.

Inoltre, sono stati consultati gli studi di Microzonazione Sismica di livello 1.

3. QUADRO NORMATIVO DI RIFERIMENTO

La Normativa Nazionale di riferimento:

- Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018". (Pubblicata nella Gazzetta Ufficiale Serie Generale n.35 del 11-02-2019 - Suppl. Ordinario n. 5).
- Decreto Ministeriale 17 gennaio 2018 "Aggiornamento delle «Norme tecniche per le costruzioni»". (Pubblicata nella Gazzetta Ufficiale Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8).
- Ordinanza Presidente del Consiglio dei ministri del 13 novembre 2010, n. 3907 "Attuazione dell'articolo 11 del decreto legge 28 aprile 2009, n. 39, convertito, con modificazioni, dalla legge 24 giugno 2009, n. 77 in materia di contributi per interventi di prevenzione del rischio sismico. (Pubblicata nella Gazzetta Ufficiale Serie Generale n.281 del 01-12-2010 Suppl. Ordinario n. 262).
- Decreto Presidente della Repubblica 19-10-2011 n. 227 "Regolamento per la semplificazione di adempimenti amministrativi in materia ambientale gravanti sulle imprese, a norma dell'articolo 49, comma 4-quater, del decreto-legge 31 maggio 2010, n. 78, convertito, con modificazioni, dalla legge 30 luglio 2010, n. 122". Pubblicato nella Gazzetta Ufficiale 3 febbraio 2012, n. 28.
- Circolare 2 febbraio 2009, n. 617 del Ministero delle Infrastrutture e dei Trasporti approvata dal Consiglio Superiore dei Lavori Pubblici "Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" (Pubblicata nella Gazzetta Ufficiale del 26.02.2009 n. 47, supplemento ordinario n. 27).
- Decreto Ministeriale 14/01/2008 "Approvazione delle Nuove norme tecniche per le costruzioni". (Pubblicata nella Gazzetta Ufficiale Serie Generale n.29 del 04-02-2008 - Suppl. Ordinario n. 30).
- Ordinanza Presidente del Consiglio dei ministri 28 aprile 2006 n° 3519 "criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone" (Pubblicata nella Gazzetta Ufficiale n.108 dell'11 maggio 2006).
- Decreto legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" (G.U. n. 88 del 14 aprile 2006).
- Ordinanza Presidente del Consiglio dei ministri del 20 marzo 2003 n. 3274 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica (Pubblicata nella Gazzetta Ufficiale 8 maggio 2003, n. 108).
- Decreto Ministeriale del 16 gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche". (Pubblicata nella Gazzetta Ufficiale Serie Generale n.29 del 05-02-1996 - Suppl. Ordinario n. 19).

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

- Legge 2 febbraio 1974, n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- Circolare Ministero Lavori Pubblici, 24 settembre 1988, n. 30483 (Pres. Cons. Superiore Servizio Tecnico Centrale) Legge 2 febbraio 1974 n. 64, Art. 1 D.M. 11 marzo 1988. "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- Decreto Ministeriale del 11 marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione". (Pubblicata nella Gazzetta Ufficiale Serie Generale n.127 del 01-06-1988 Suppl. Ordinario).

La Normativa Regionale di riferimento:

- Legge Regionale 11 agosto 2011 n. 28 "Norme per la riduzione del rischio sismico e modalità di vigilanza e controllo su opere e costruzioni in zone sismiche". (Approvata dal Consiglio regionale con verbale n. 87/1 del 26 luglio 2011, pubblicata nel BURA 26 agosto 2011, n. 51 ed entrata in vigore il 24 novembre 2011).
- L.R. 29 luglio 2010, n. 31 "Norme regionali contenenti la prima attuazione del decreto legislativo 3 aprile 2006, n. 152" (Norme in materia ambientale).
- Leggi Regionali adottate in merito all'adozione del "Piano stralcio di bacino per l'assetto idrogeologico: Difesa Alluvioni e Fenomeni Gravitativi e Processi Erosivi":
 - Legge Regionale del 16 settembre 1998, N. 80 "Norme per il riassetto organizzativo e funzionale della difesa del suolo" e successive modifiche ed integrazioni, con particolare riferimento agli articoli 3, 17, 18,19, 20, 21 e 22.
 - □ Legge Regionale del 24 agosto 2001 n. 43 "Istituzione della Autorità di Bacino di rilievo interregionale del fiume Sangro".
 - □ Legge Regionale del Molise 28.10.2002 n. 29 "Istituzione della Autorità di Bacino di rilievo interregionale del fiume Sangro".
- Legge Regionale del 26 ottobre 1992 n. 93 "Norme per lo snellimento di procedure per gli interventi di costruzione, riparazione, sopraelevazione e ampliamento nelle zone dichiarate sismiche ai sensi della legge 2 febbraio 1974, n. 64". Circ. Dir. Centr. Tecn. N° 97/81.
- Legge Regionale del 18 maggio 1989 n. 183 e s.m.i. "Riassetto organizzativo e funzionale della difesa del Suolo". In riferimento all'art.17 comma 6 ter. edito dalla Regione Abruzzo Direzione Territorio Urbanistica, Beni Ambientali, Parchi, Politiche e Gestione dei Bacini Idrografici

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE) Cell. +39 392-5705714 e-mail: geologo.pomposomartin@gmail.com; PEC: martin.pomposo@arubapec.it; P. IVA 02251610685 - C.F. PMPMTN90B19G438H	8/70
--	--	------

> La Normativa aggiuntiva di riferimento:

- Raccomandazioni sulla programmazione ed esecuzione delle indagini geognostiche e geotecniche (A.G.I., 1977).
- UNI EN 1998 5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica – Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- UNI EN 1997 1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- Codice Deontologico riguardante l'esercizio della professione di geologo in Italia approvato dal Consiglio Nazionale dei Geologi con deliberazione n.143 del 19 dicembre 2006 ed emendato con deliberazione n. 65 del 24 marzo 2010.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposo@arubapec.it;
PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

4. INQUADRAMENTO AMMINISTRATIVO - GEOGRAFICO

Il sito oggetto di studio, Liceo Artistico, Musicale e Coreutico "Mistioni - Bellisario" - sede Bellisario si trova in Via Luigi Einaudi, all'interno del territorio comunale di Pescara; esso, quindi, risiede nel tratto costiero della Regione Abruzzo in Provincia di Pescara.

I limiti amministrativi del comune di Pescara sono delineati a Sud dai comuni di Chieti e San Giovanni Teatino, ad Ovest dal comune di Spoltore, a Nord dal comune di Montesilvano, mentre a Nord-Est ed Est dal Mare Adriatico e a Sud-Est dal comune di Francavilla (Fig.1).

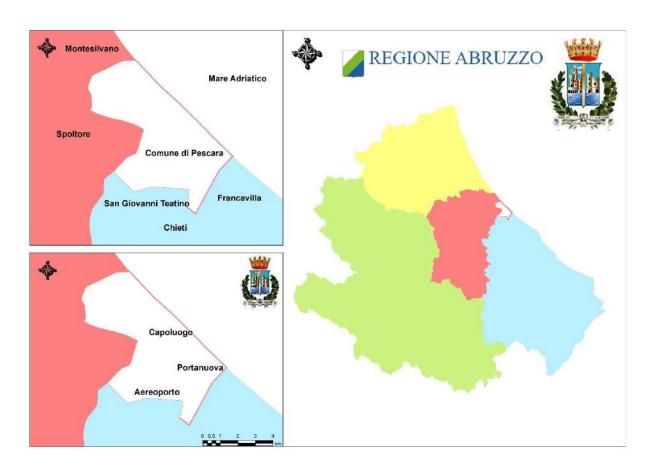


Figura 1 Inquadramento amministrativo

Il sito di progetto è inscritto nel Foglio n. 31D, particella 3528, della mappa

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)		
	Cell. +39 392-5705714		
	e-mail: geologo.pomposomartin@gmail.com;	10/70	
	PEC: martin.pomposo@arubapec.it;		
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H		

catastale di Pescara (PE) (Fig.2).

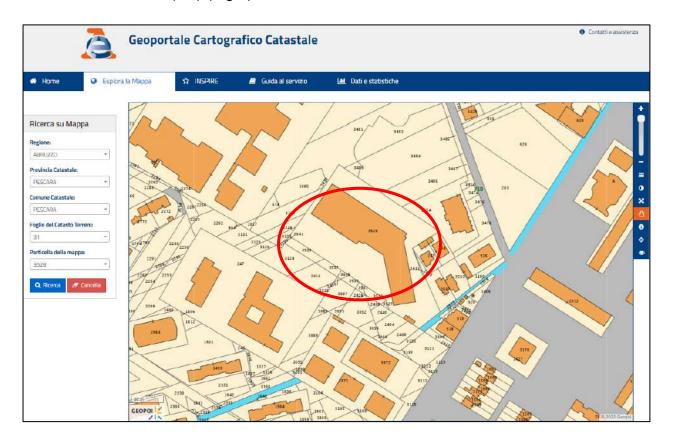


Figura 2 Mappa Catastale Agenzia delle Entrate (c) 2022

Il territorio comunale è delimitato anche morfologicamente da una serie di fossi e fiumi. Il territorio comunale, da Ovest a Est, è attraversato dal Fiume Aterno-Pescara.

Figura 3 - Immagine satellitare Google Earth

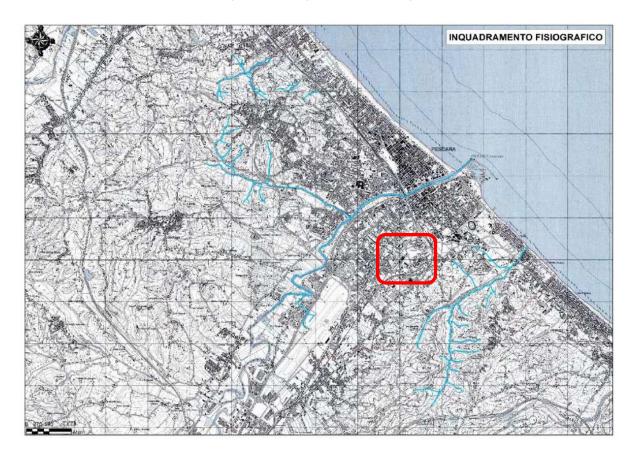


Figura 4 Inquadramento fisiografico.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)
Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

Il comune di Pescara è suddiviso in diverse aree e frazioni principali, le quali rappresentano le zone con maggiore densità demografica, e quindi maggiormente urbanizzate.

Il territorio comunale ha la densità demografica più alta della Provincia (Fig.4).

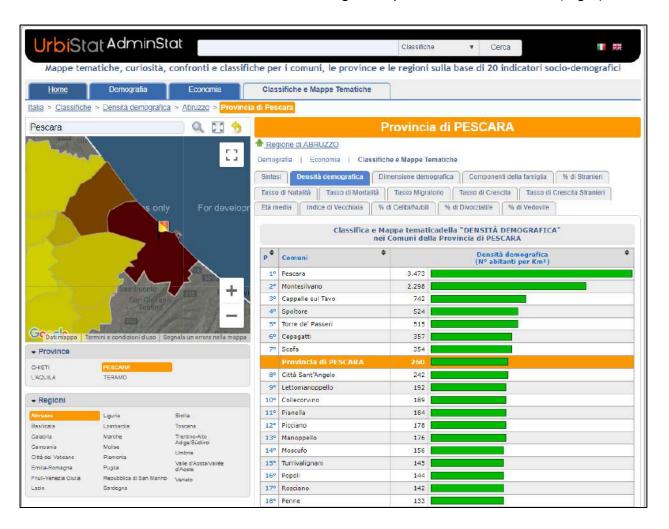


Figura 5 Dati Urbistat, sulla popolazione

(https://ugeo.urbistat.com/AdminStat/it/tl/classifiche/densita-demografica/comuni)

Il settore abruzzese, nella quale ricade il territorio comunale di Pescara è caratterizzato da una morfologia di tipo collinare dal profilo dolce ed arrotondato, incisioni vallive poco accentuate e variazioni altimetriche piuttosto modeste nel settore occidentale; mentre nell'area centrale ed orientale, adiacente il reticolo idrografico del Fiume Pescara e lungo la costa, ritroviamo paesaggi a morfologia sub-pianeggiante con ampie superfici terrazzate.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE) Cell. +39 392-5705714 e-mail: geologo.pomposomartin@gmail.com; PEC: martin.pomposo@arubapec.it;	13/70
OLOMONI GEOGRA	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Le pendenze che caratterizzano il territorio comunale di Pescara variano dagli 0° lungo i terrazzi del Fiume Pescara e la zona costiera, mentre arrivano fino a 35° nei pressi di Pescara Colli e San Silvestro (Fig.6).

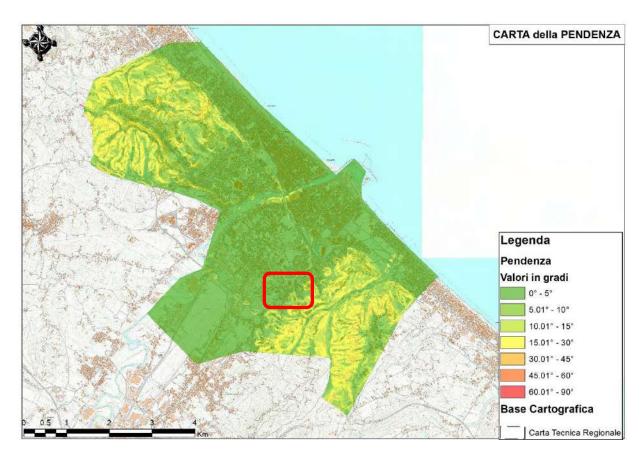


Figura 6 Carta delle pendenze

Le quote altimetriche che caratterizzano il territorio comunale di Pescara variano dagli 0 metri s.l.m., zona costiera, 220 m s.l.m. nei pressi di Pescara Colli e San Silvestro (Fig.6).

Di seguito viene riportata la carta delle quote topografiche sul livello del mare. Il sito di progetto si trova in area con quote comprese tra i 4 ed i 10 metri sul livello del mare.

Questa cartografia è stata prodotta mediante un'interpolazione, prodotta dal software QGIS, dei dati presenti all'interno della Carta Tecnica Regionale abruzzese del 2007 (Fig.7).

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Figura 7 - Carta delle quote topografiche sul livello del mare

Il territorio studiato viene qui riportato nelle varie cartografie presenti, ovvero Cartografia di base IGM 25.000 - Regioni zona WGS84-UTM33 e Carta Tecnica Regionale del 2007.

Nella nuova cartografia regionale, il territorio comunale in oggetto è confinato nei Fogli 351, tavola Est in scala 1: 25.000 (Regione Abruzzo, 2000) (Figg. 8-9).

Figura 8 Quadro d'unione 25.000

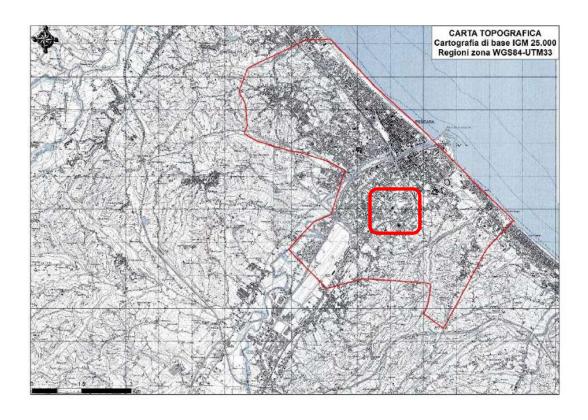


Figura 9 Carta Topografica IGM 1:25.000

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;
PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

In riferimento alla Carta Tecnica Regionale 2007 (CTR) in scala 1:5.000, il comune di Pescara è individuato negli elementi numero 351101, 351102, 351111, 351112, 351113, 351114, 351151, 351152, 351154 e 351164 (Figg. 10-11).

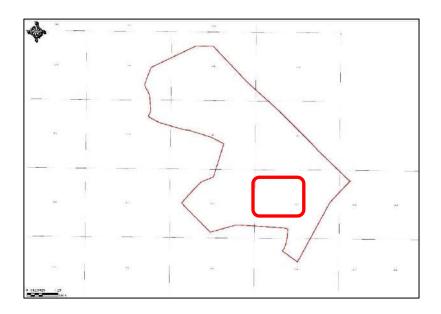


Figura 10 Quadro d'unione 1:5000

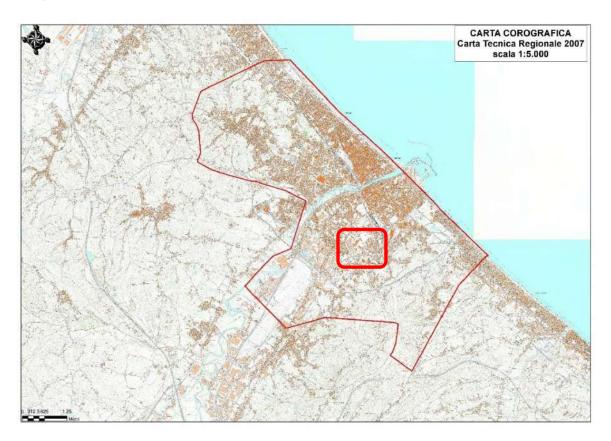


Figura 11 Carta Tecnica Regionale 2007

STUDIO DI COMPATIBILITÀ **GEOMORFOLOGICA** Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com; PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

5. INQUADRAMENTO GEOLOGICO

Il settore abruzzese preso in esame è il risultato di una passata evoluzione caratterizzata da fenomeni di deformazioni e successivo sollevamento dei domini Meso-Cenozoici, iniziata nel Neogene (Fig.11).

Questi fenomeni sono parte dei cinematismi ancora in atto del sistema orogenico, caratterizzato da un sistema catena-avanfossa-avanpaese, in cui si possono distinguere principalmente due fasi evolutive; la prima fase in cui gli sforzi compressivi migrano dal settore tirrenico (occidentale) a quello adriatico (orientale) e la seconda fase in cui inizia a svilupparsi un regime distensivo. Entrambi gli eventi non sono, però, nettamente distinti: la fase distensiva accompagna quella compressiva dal Miocene superiore ed è tuttora in atto. L'evoluzione del sistema catena-avanfossa è iniziata in ambiente sottomarino, per poi proseguire con l'emersione dell'attuale dorsale appenninica verificatasi in tempi recenti e a partire dal Quaternario.

Nel Pliocene medio-Pleistocene inferiore, con l'innalzamento graduale della catena si sono instaurate le condizioni necessarie affinché la "neo-catena" venisse erosa e subito dopo caratterizzata dalla sedimentazione di depositi detritici alluvionali e lacustri nelle aree depresse lungo il settore periadriatico.

Nella fase tardo post-orogenica la fascia periadriatica risulta caratterizzata quindi da una serie di anticlinali Est-vergenti, sovrascorse ed accavallate fra di loro in modo da creare una serie di bacini satellite, detti *piggy-back*, dove si sono depositati i sedimenti erosi, sigillando le strutture più antiche nel settore orientale.

L'Abruzzo orientale quindi è caratterizzato da un sistema di avanfossa in continua migrazione verso est, in cui sono presenti sedimenti eterogenei, che sono stati deposti in aree differenti nello stesso periodo; ciò è messo in evidenza anche dalla tettonica distensiva già attiva durante i primi stadi evolutivi dell'avanfossa (Fig.12).

Nella fase più avanzata, durante il Pliocene inferiore, la struttura migra sempre verso Est, dove inizia a svilupparsi un sistema a pieghe e sovrascorrimenti, che provoca la deposizione dei sedimenti presenti lungo la fascia costiera periadriatica.

STUDIO DI
COMPATIBILITÀ
COMPATIBILITA
GEOMORFOLOGICA

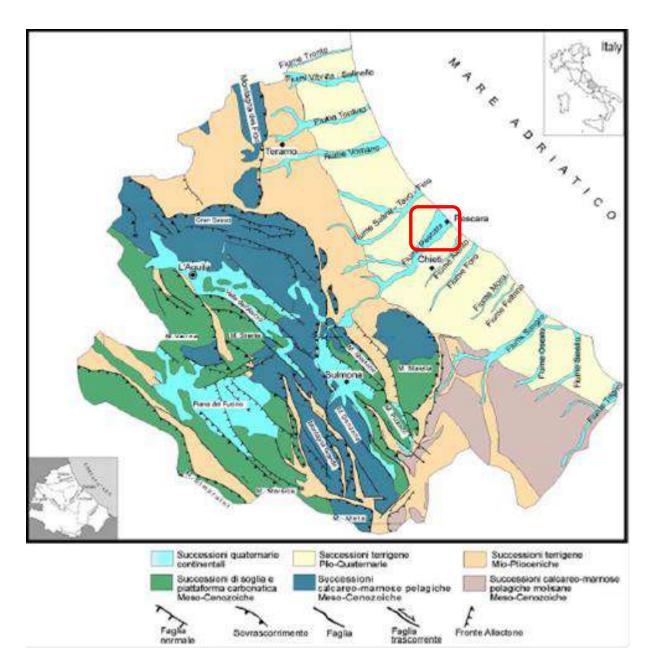


Figura 12 Schema geologico semplificato da D'ALESSANDRO et al., 2003

L'instaurarsi di fenomeni deposizionali molto eterogenei è indubbiamente dovuto anche alla complessa morfologia che caratterizza l'intera avanfossa. In particolare, le aree più depresse vengono riempite da facies arenacee massive a differenza delle aree rialzate, in cui si depositano facies torbiditiche prevalentemente pelitiche. Queste ultime si dispongono in discordanza sopra le successioni preesistenti nelle aree bacinali,

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	19/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

mentre nelle aree sollevate sedimentano depositi neritici di mare basso o di emersione, detti hardgrounds.

Nel settore interno della catena sono presenti prevalentemente unità attribuibili ad un sistema deposizionale di piattaforma-margine-bacino; queste sono perlopiù facies carbonatiche differenziate in funzione dell'ambiente deposizionale. Tali successioni si sviluppano in un intervallo temporale che va dal Triassico al Neogene medio (Fig.11).

A partire dall'alto Neogene, contemporaneamente all'emersione della catena, incominciano a sedimentare depositi silicoclastici nel settore periadriatico; questi depositi sono prevalentemente formati da argille, marne, arenarie e flussi torbiditici (Fig.13).

Figura 13 Carta degli elementi strutturali del bacino periadriatico da BIGI et al., 1997.

5.1. ASSETTO GEOLOGICO LOCALE

Il sito di studio, in dettaglio, è collocato nell'area collinare affacciata a pochi km dal mare Adriatico. La morfologia del terreno, a supporto della nota bibliografia esistente testimonia un paesaggio sviluppato al di sopra di depositi di carattere silicoclastico.

Nell'area vengono riportati depositi riferibili alla successione marina denominata Formazione di Mutignano. Tale formazione geologica rappresenta, nell'area adriatica, l'ultima unità che si depositata a partire dal Pliocene superiore fino al Pleistocene.

La successione è caratterizzata da tre principali unità litotecniche: l'associazione pelitico-sabbiosa (FMTa), blocchi conglomeratici (FMTb), associazione sabbioso-pelitica (FMTc) e sabbioso-conglomeratica (FMTd) (Fig.14).

La tettonica non presenta particolari evidenze superficiali, vista la natura litologica dei terreni presenti, ma studi ancora in atto, mettono in evidenza una neotettonica che ha mostrato una tenue attività negli ultimi milioni di anni (Pleistocene-Olocene).

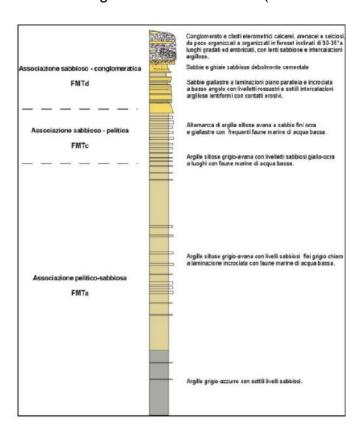


Figura 14 Schema stratigrafico della Formazione di Mutignano (note illustrative Foglio 351 Pescara Progetto Carg

!	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)		
STUDIO DI	Cell. +39 392-5705714		
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	21/70	
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;		
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H		

Della bibliografia geologica vengono riportate e descritte le principali cartografie esistenti, tra queste abbiamo:

- Carta Geologica del Servizio Geologico d'Italia a scala 1:100.000 (Fogli 140-141, Teramo-Pescara) (Fig.15);
- Carta Geologica dell'Abruzzo di L. Vezzani & F. Ghisetti, 1: 100.000 (Fogli EST e OVEST) (Fig.16);
- Carta Geologica d'Italia Progetto CARG in scala 1:50.000 (Foglio 351, PESCARA) (Fig.17);
- Carta Geologico Tecnica Microzonazione Sismica I livello della Regione Abruzzo (scala 1:5.000) (Fig.18).

La microzonazione sismica di primo livello è stata commissionata dalla Regione Abruzzo per le aree urbanizzate (Fig. 18).

Infine, l'area oggetto di studio rientra in un sito caratterizzato da depositi alluvionali terrazzati.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)



Figura 15 Carta Geologica del Servizio Geologico d'Italia a scala 1:100.000 (Foglio 141, Pescara)

STUDIO DI	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	23/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

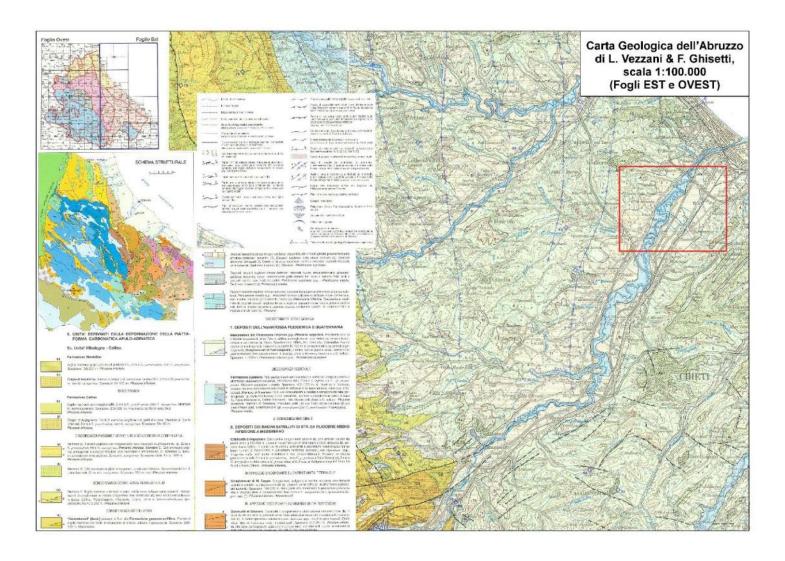


Figura 16 - Carta Geologica dell'Abruzzo di L. Vezzani & F. Ghisetti, 1: 100.000 (Foglio EST)

STUDIO DI	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	24/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

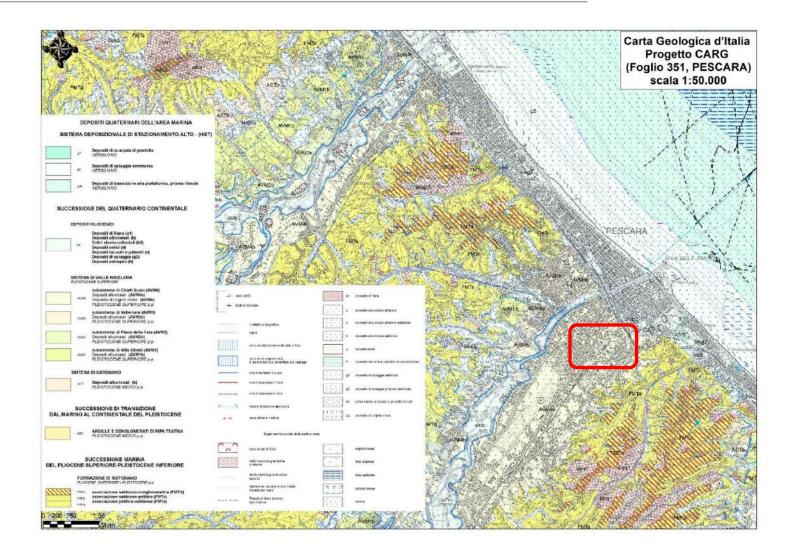


Figura 17 -Carta Geologica d'Italia Progetto CARG in scala 1:50.000 (Foglio 351, PESCARA)

STUDIO DI	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	25/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

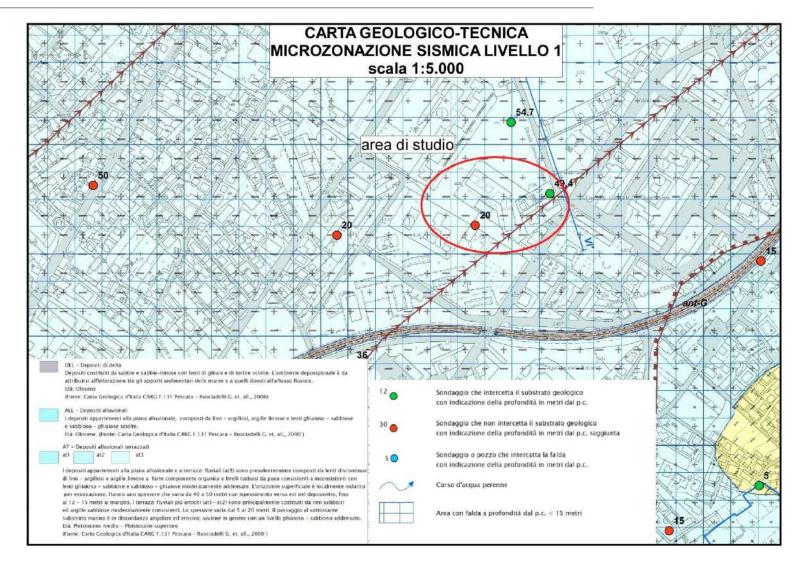


Figura 18 - Carta Geologico - Tecnica Microzonazione Sismica I livello della Regione Abruzzo (scala 1:5.000).

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA
--

6. INQUADRAMENTO GEOMORFOLGICO

Dal punto di vista morfologico l'area presenta un assetto monoclinalico con immersione verso Est, legato principalmente al sollevamento regionale differenziato, attivo già dal pleistocene basale-medio. A questo si associa un sistema di faglie trasversali ed oblique, ovvero faglie da strappo (BIGI et al., 1995).

Il sollevamento regionale, avvenuto nel Pleistocene inferiore, è responsabile anche dello sviluppo di faglie normali sui fianchi delle pieghe, che caratterizzano i depositi fluviali terrazzati fino al primo ordine (Fig.19).

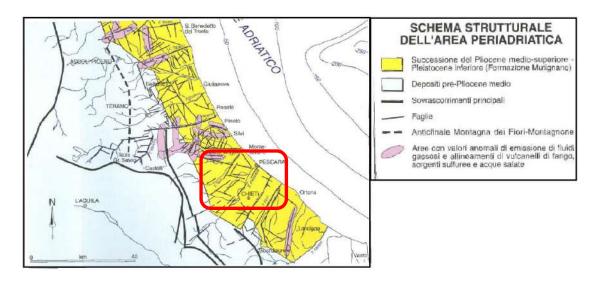


Figura 19 Schema strutturale dell'area periadriatica BIGI et al., 1996-1997

La tettonica quaternaria, invece, è evidenziata da diversi elementi, quali: anomalie nel reticolo idrografico, fenomeni di migrazione di antichi corsi d'acqua ad andamento trasversale, basculamenti di depositi terrazzati, faccette triangolari e trapezoidali, valli sospese, depositi quaternari di diversa età dislocati più volte (Fig.20), allineamenti dei vulcanelli di fango, concentrazione anomala di fluidi gassosi (Fig.19), l'innesco di movimenti gravitativi profondi ed infine dalla morfologia calanchiva di alcune aree a rapido sollevamento (BIGI et al.,1996-1997).

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: <u>geologo.pomposomartin@gmail.com;</u>

PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

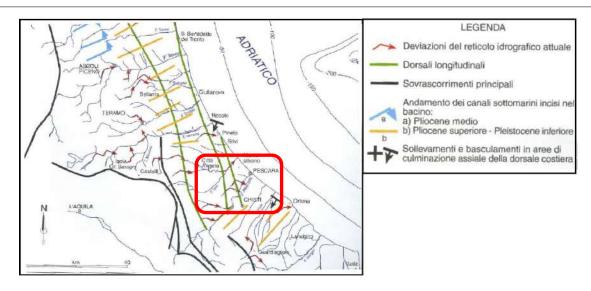


Figura 20 Caratteri morfostrutturali da BIGI et al., 1996-1997

Altro parametro fondamentale per l'analisi geomorfologica è il tasso di sollevamento lungo l'area nel Pleistocene medio-superiore (Fig.21); il sollevamento risulta differenziato lungo la fascia costiera, ma è considerabile omogeneo nell'area centrale, seppur la presenza nel modello strutturale di una serie di faglie a direzione W-E (BIGI et al., 1996/1997).

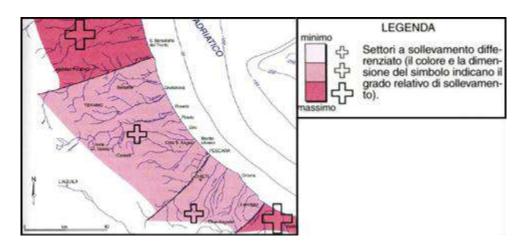


Figura 21 assetto morfostrutturale durante il Pleistocene medio-sup. da BIGI et al., 1997

A tal riguardo, (PIZZI 2003; FACCENNA et al., 2014), hanno calcolato il tasso di *uplift-rate* su un'analisi dei depositi di spiaggia negli ultimi 0.7 My, ottenendo un valore medio di circa 1 mm/y lungo la fascia pedemontana e 0.18mm/y lungo la costa (Figg. 22-23). Tali valori derivano dalla somma algebrica dei tassi di subsidenza e dei tassi di sollevamento.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI (Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: <u>geologo.pomposomartin@gmail.com;</u>	28/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

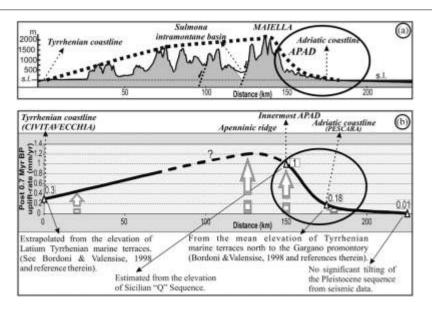


Figura 22 Uplift rate da PIZZI, 2003

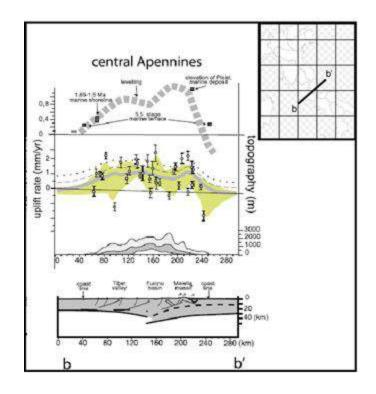


Figura 23 Cross-section con uplift rate da FACCENNA, 2014

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

6.1. ASSETTO GEOMORFOLOGICO LOCALE

L'area di studio è contenuta nella regione collinare a ridosso della costa adriatica (circa 1-2 km), caratterizzata da una serie di dorsali, che non superano le poche centinaia di metri, orientate principalmente, a direzione W-S, parallele i reticoli idrografici principali.

L'attuale conformazione morfologica è vincolata dalla natura dei litotipi, che è stata trattata nel capitolo precedente. La formazione affiorante e i terreni di copertura condizionano la circolazione idrica superficiale e sotterranea ma anche la conformazione geometrica del paesaggio. Date quindi le caratteristiche geotecniche dei depositi, si rilevano processi di denudazione e di erosione dei versanti con una morfogenesi legata spesso alla gravità. L'azione delle acque superficiali combinata, talvolta, alle caratteristiche dei depositi, funge da catalizzatore causando così la saturazione delle coltri superficiali che favoriscono lenti fenomeni di scorrimento di versante che in alcuni casi possono progredire in corpi di frana estesi.

Infine, all'interno del progetto denominato PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO DEI BACINI DI RILIEVO REGIONALE ABRUZZESI E DEL BACINO INTERREGIONALE DEL FIUME SANGRO L.18.05.1989 n.183 art.17 comma 6 ter. edito dalla REGIONE ABRUZZO DIREZIONE TERRITORIO URBANISTICA, BENI AMBIENTALI, PARCHI, POLITICHE E GESTIONE DEI BACINI IDROGRAFICI – Servizio Difesa del Suolo – Autorità dei Bacini Regionali L.R. 16.09.1998 n.81 e L.R. 24.08.2001 n.43), non vi sono forme gravitative attive adiacenti al sito di progetto, che generano pericolosità.

Di seguito si riportano le cartografie riferibili al progetto PAI, ovvero gli shapefile pubblicati nel 2021. In primis, riportiamo la carta geomorfologica pubblicata ed attualmente in vigore nell'area di studio.

Si uno stralcio della carta geomorfologica in vigore PAI (Fig.24).

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

Dott. Geol. Martin Pomposo

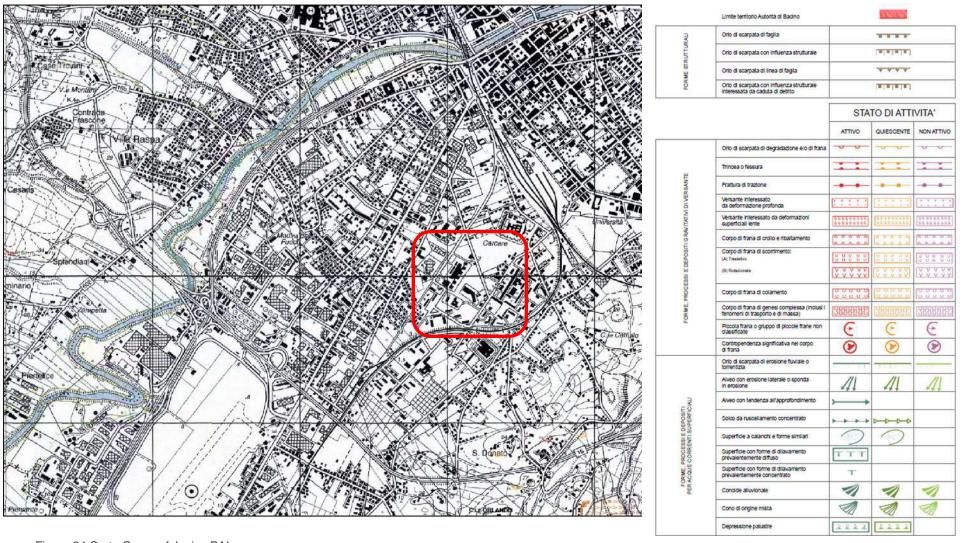


Figura 24 Carta Geomorfologica PAI

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE) Cell. +39 392-5705714	
STUDIO DI COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	31/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Di seguito si riporta uno stralcio della carta della pericolosità in vigore del PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO PAI, shapefile 2021 (Fig.25).

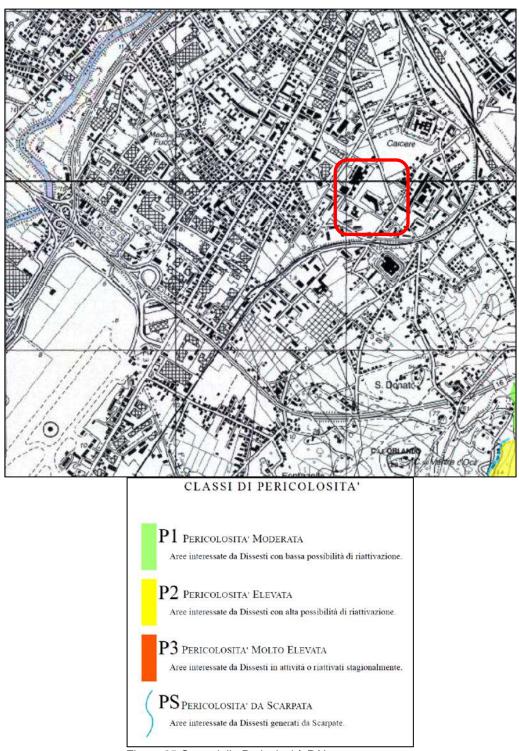


Figura 25 Carta della Pericolosità PAI

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

Di seguito si riporta uno stralcio della carta del rischio in vigore del PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO PAI, shapefile 2021 (Fig.26).

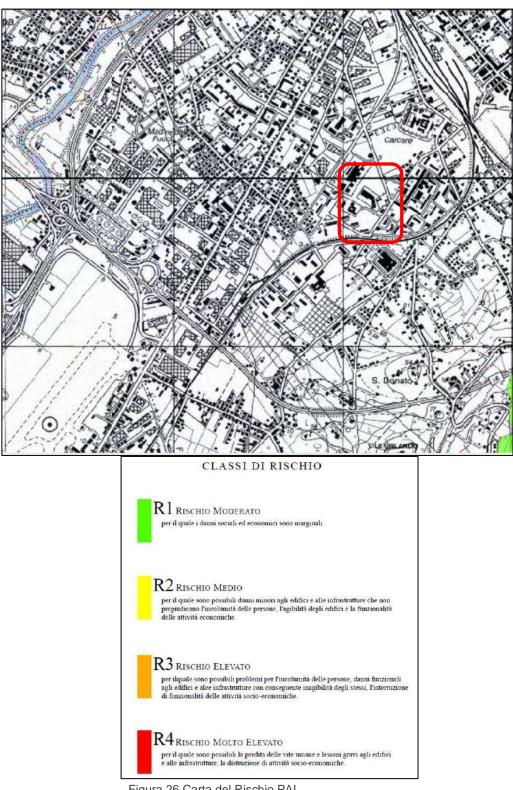


Figura 26 Carta del Rischio PAI

STUDIO DI COMPATIBILITÀ **GEOMORFOLOGICA** Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it; P. IVA 02251610685 - C.F. PMPMTN90B19G438H

Di seguito si riporta uno stralcio del PIANO STRALCIO DI DIFESA DELLE ALLUVIONI IN ATTUAZIONE PSDA (Fig.27) AGGIORNATO a fine MARZO 2021.

L'area come visibile nello stralcio riportato, di seguito, non ricade in aree perimetrate con pericolosità da alluvione moderata.

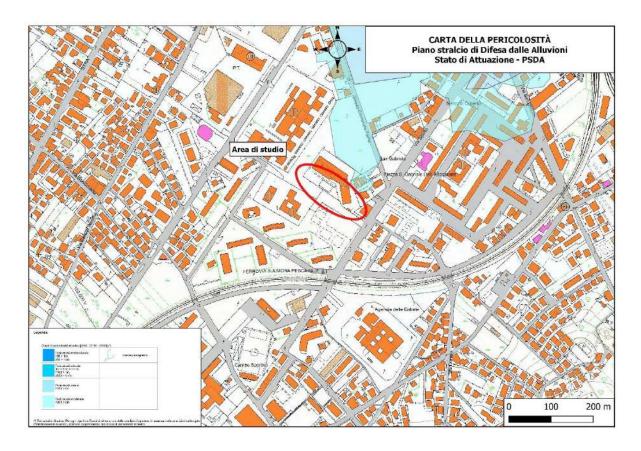


Figura 27 – Carta della Pericolosità riferita al Piano stralcio di difesa dalle alluvioni in attuazione PSDA

Il Progetto IFFI (Inventario dei Fenomeni Franosi in Italia), realizzato dall'ISPRA e dalle Regioni e Province Autonome, fornisce un quadro dettagliato sulla distribuzione dei fenomeni franosi sul territorio italiano.

Nell'area di studio, all'interno dell'IFFI, non sono presenti i fenomeni franosi (Fig.28).

Figura 28 Carta Inventario dei Fenomeni Franosi in Italia

L'interpolazione dei dati derivanti la carta tecnica regionale, quali curve di livello e punti quotati permette di ricostruire un modello digitale del terreno. Questi dati hanno diversi limiti, tra cui: il passo di campionamento è superiore a 5 metri, le date di acquisizioni sono da riferire al periodo che va dal 2004 al 2007 e spesso si basano su punti di origine fotogrammetrica.

Premesso ciò, è stato comunque possibile ricostruire un modello numerico mediante l'ausilio del software QGIS, che è un'applicazione desktop GIS open source, molto simile nell'interfaccia utente e nelle funzioni ai pacchetti GIS commerciali equivalenti.

Gli elaborati prodotti sono la carta delle pendenze (Fig.29), e la carta delle ombreggiature (Fig.30).

La prima carta, ovvero, delle pendenze permette di calcolare la classe topografica di base, in riferimento alle norme tecniche delle costruzioni (NTC-2018 Cap. 3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE).

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

La classe topografica dell'area è T1.

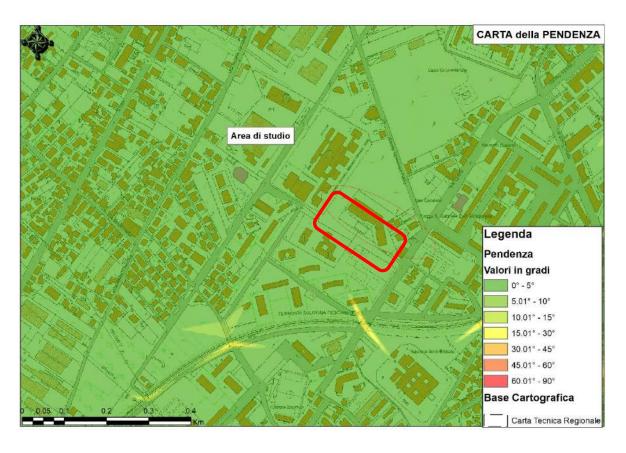


Figura 29 Carta delle Pendenze

Dalla carta delle ombre si può notare come sia morfologicamente modellato il territorio in corrispondenza dell'abitato in questione.

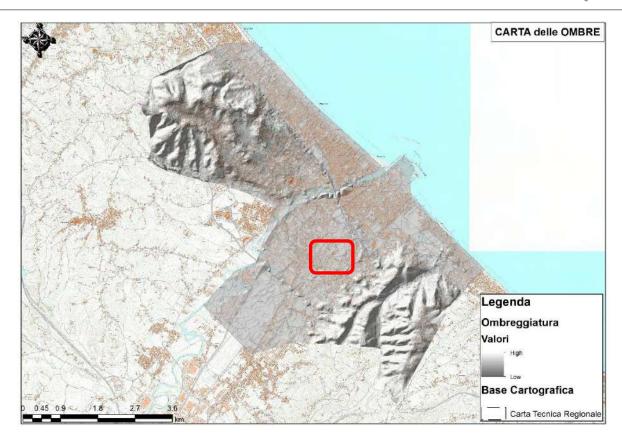


Figura 30 Carta delle Ombre

All'interno del piano paesistico regionale agg. 2009, l'area non ricade all'interno di vincoli (Fig.31).

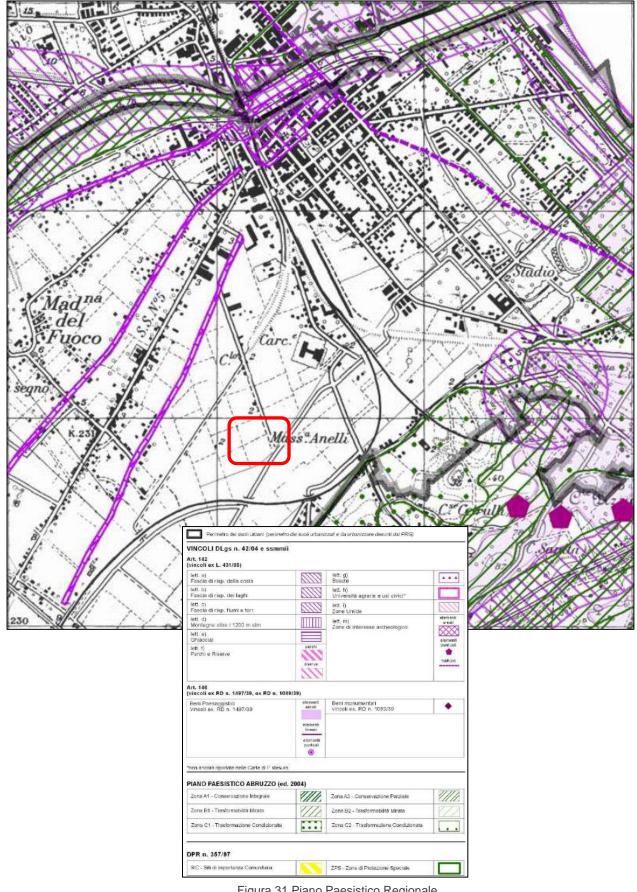


Figura 31 Piano Paesistico Regionale

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE) Cell. +39 392-5705714 STUDIO DI **COMPATIBILITÀ** e-mail: geologo.pomposomartin@gmail.com; 38/70 **GEOMORFOLOGICA** PEC: martin.pomposo@arubapec.it; P. IVA 02251610685 - C.F. PMPMTN90B19G438H

L'area di studio non rientra in aree protette e/o con vincoli.

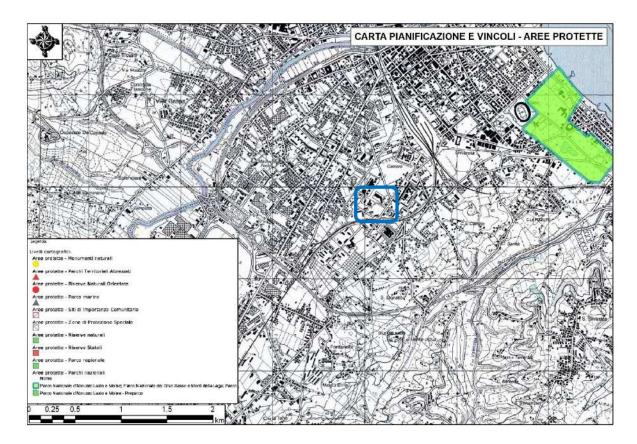


Figura 32 Carta della Pianificazione e vincoli

7. IDROLOGIA E IDROGEOLOGIA

L'area di studio ricade dentro il bacino del Fiume Aterno-Pescara, nel settore collinare (Fig.31).

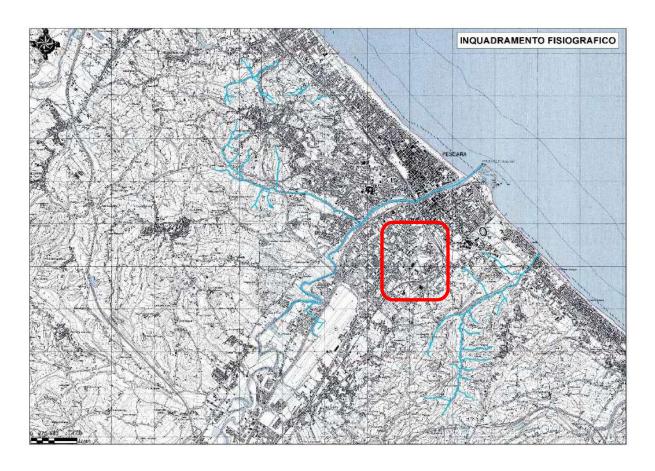


Figura 33 Inquadramento fisiografico (PRG).

FIUME ATERNO-PESCARA

L'idrografia superficiale dell'area è controllata nelle sue linee principali dal Fiume Pescara, che sfocia a N-E nel mar Adriatico. Il reticolo idrografico del suddetto fiume presenta portate medie, che salvo casi eccezionali, si aggirano attorno a 57 m³/s durante tutto l'anno; l'estensione del bacino idrografico, come riportato nelle tabelle a seguire si aggirano attorno a 3147.77 km³.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;
PEC: martin.pomposo@arubapec.it;

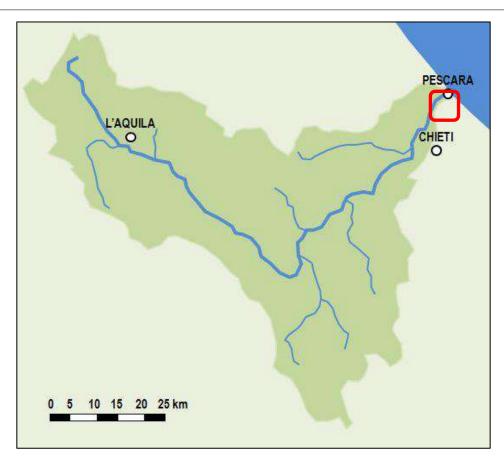
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

L'estensione e la natura dei paesaggi che attraversa rendono il Fiume Pescara tra i più importanti d'Italia. Di conseguenza il bacino idrografico può essere suddiviso, in tre frazioni: alto, medio e basso corso.

Caratteristiche del bacino idrografico			
Nome bacino Area totale (Km²) Sezione			Area (Km²)
Aterno-Pescara	3147,77	Alto Corso*	1908,57
		Medio Corso**	701,89
		Basso Corso***	537,31

^{*} Tale superficie è comprensiva dei bacini del Torrente Raio, Fiume Vera, del Fiume Gizio e del Fiume Sagittario

Nome	Area	Perimetro	Estensione latitudinale ¹ (m)		Estensione longitudinale ¹ (m)	
	(Km²)	(Km)	N min	N max	E min	E max
Aterno-Pescara	3147,77	394,91	4630260	4715185	2364361	2456540


¹Coordinate Gauss-Boaga, fuso Est.

Dal punto di vista geografico ed amministrativo il bacino idrografico del Fiume Aterno - Pescara coinvolge nella totalità la Regione Abruzzo; nasce nella Provincia di L'Aquila, a seguire attraversa la Provincia di Chieti, Teramo e Pescara.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	41/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

^{**} Tale superficie è comprensiva dei bacini del Fiume Tirino e del Fiume Orta

^{***} Tale superficie è comprensiva del bacino del Fiume Nora

Nome bacino	Province	Numero Comuni	Area del bacino ricadente nella Provincia (Km²)	% Area totale del bacino ricadente nella Provincia
Aterno-Pescara	Chieti	9	56,7	1,80
	L'Aquila	69	2281,51	72,48
	Pescara	40	809,55	25,72
	Teramo	1	0,01	0,00

Di seguito si riporta la Carta Idrogeologica redatta dalla Regione Abruzzo, nella quale vengono delineati i colpi idrici superficiali ed i corpi idrogeologici (Fig.34).

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	42/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

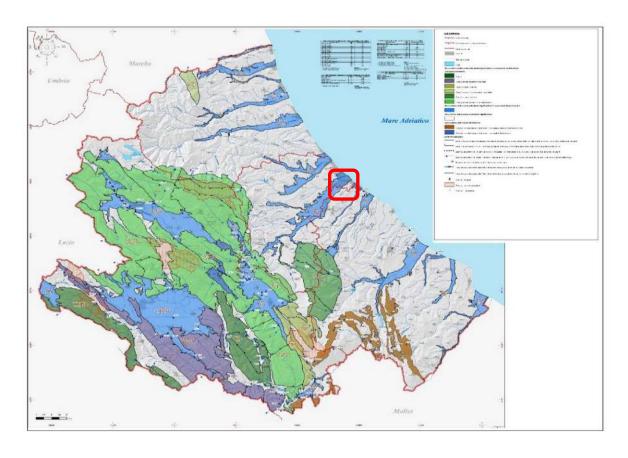


Figura 34 carta dei corpi idrogeologici della Regione Abruzzo

Di seguito viene riportata la carta del vincolo Idrogeologico, in cui sono state riportate le aree vincolate ai sensi dell'Art.1 del R.D.30/12/23 n.3267, pertanto non ha carattere di ufficialità. Gli originali sono depositati presso i Commissario Provinciale del Corpo Forestale dello Stato.

Il sito oggetto di studio non ricade all'interno delle aree perimetrate con il vincolo idrogeologico (Fig.35).

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

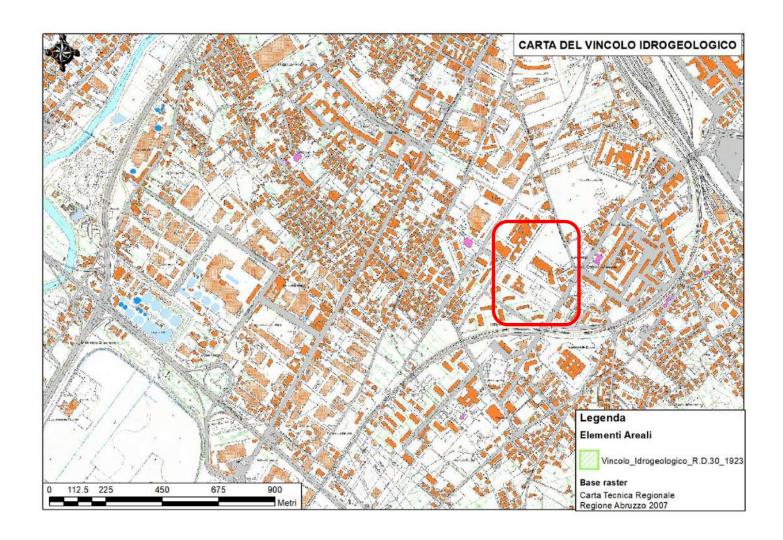


Figura 35 Carta del Vincolo Idrogeologico

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	44/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

7.1. IDROLOGIA ED IDROGEOLOGIA LOCALE

Le caratteristiche morfologiche, descritte nei paragrafi precedenti, mettono in evidenza una morfologia di tipo sub-pianeggiante; questa è stata favorita dallo sviluppo di un'idrografia superficiale in cui le aste fluviali si diffondono verso Est, (Esempio Fiume Aterno-Pescara).

Date le caratteristiche litotecniche, le intense precipitazioni meteoriche producono un intenso processo di erosione e di dilavamento superficiale, che confluiscono nei fossi e nei rivoli vicini che spesso non sono adeguati a sostenere eventi intensi e copiosi.

La natura argillosa-limosa con livelli limosi-torbosi di questi depositi non permette di escludere la presenza di una falda idrica effimera.

La scarsa presenza di acqua, peculiare dell'area, è vincolata alle modeste dimensioni dei bacini di alimentazione e dalla scarsa conducibilità idraulica complessiva dei depositi presenti.

Di conseguenza possiamo dire che siamo in presenza di falde spesso sospese o meglio, intrappolate tra uno o più livelli meno permeabili.

Infine, possiamo ribadire che, il sito di progetto mostra caratteristiche idrogeologiche molto variabili, in relazione all'eterogeneità dei tipi litologici presenti.

La formazione di base, posta in profondità, ha piccoli livelli sabbiosi con alta composizione pelitica e presenta un limitato grado di permeabilità, spesso dovuta alla fratturazione e fessurazione.

Questa, di conseguenza si comporta come un acquicludo dell'acquifero individuato nei materiali sovrastanti il bedrock, ovverosia ne costituisce il substrato impermeabile.

Talora, nelle intercalazioni granulari di spessore limitato, le acque possono accumularsi individuando falde a bassissimo potenziale idrico sostenute dai sedimenti argillosi. La presenza di acqua nella formazione di base è da collegarsi a fenomeni di imbibizione e saturazione dei terreni, con cessioni e movimenti lenti.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	45/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Tali terreni, infatti, hanno una granulometria fine o molto fine che non favorisce la circolazione idrica sotterranea e le acque meteoriche; di conseguenza le acque esogene tendono al ristagno superficiale piuttosto che all'infiltrazione. Questo aspetto è confermato dall'andamento morfologico dell'area nei dintorni, dell'area di studio, e in particolar modo dal *pattern* dell'idrografia superficiale.

Nelle coltri superficiali, la distensione dei legami interparticellari, legata a processi di alterazione, favorisce una circolazione idrica per dispersione corticale. Il flusso idrico, che si svolge in questa unità, segue e si adatta alla morfologia esterna e si accumula in corrispondenza delle variazioni di pendenza. In questo caso si formano accumuli di acqua anche con scarso potenziale idrico.

A seguito della prova C.P.T. 1 eseguita nel 2021, è stata riscontrata la presenza di una falda acquifera, nel sedime di progetto, alla profondità di circa -2.40 metri dal p.c. Tale piezometrica può subire oscillazioni fino al piano campagna in condizioni di eventi con intense precipitazioni meteoriche.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

8. MODELLO STRATIGRAFICO

Le caratteristiche litostratigrafiche e fisico-meccaniche dei terreni sono da riferire a rilievi geologici e geomorfologici di superficie, studi ed indagini della stessa provincia geologica, nonché dalle conoscenze geologiche dello scrivente.

I litotipi che caratterizzano l'area, fino alla profondità d'indagine, sono formati da depositi alluvionali olocenici caratterizzati da alternanze di limi argillosi con livelletti sabbiosi e torbosi. Siffatti depositi poggiano stratigraficamente sui depositi ghiaiosi sovrapposti alle argille plio-pleistoceniche. Questi depositi presentano un elevata eterogeneità sia orizzontale che verticale, di conseguenza, presentano caratteristiche fisico meccaniche disomogenee.

I parametri, oltre all'analisi dei reperti di sondaggio, vengono fuori da un confronto anche con quelle che sono stati i risultati delle prove geotecniche eseguite ad integrazione dallo scrivente.

L'area di progetto risulta essere costituita dalla successione litostratigrafica così semplificata.

- Terreno vegetale e materiale di origine Antropica

Terreno vegetale e Conglomerato bituminoso e sottofondo stradale. Spessore variabile fino a 1.50 metri.

- Limo argilloso di colore giallo-verdastro mediamente consistente

Limo argilloso consistente di colore grigiastro. Al suo interno screziature ocracee e noduli carbonatici decalcificati e clasti. Spessore variabile fino a circa 6.0 metri.

Limo argilloso e/o Argilla limosa da poco consistente a mediamente

Argilla limosa poco consistente con livelletti torbosi e livelletti sabbiosi. Vi sono abbondanti livelli di materiale organico. Lo spessore è di circa 32.00-35.00 metri.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)
STUDIO DI	Cell. +39 392-5705714
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H

- Ghiaia eterometrica

Costituito da ghiaia eterometrica di natura calcarea con limo sabbioso di colore avana. I clasti, di natura calcarea, hanno forma arrotondata a diametro medio 3 – 4 cm. Lo strato è intercettato, da sondaggi geognostici profondi, alla profondità di circa 39,00-40.00 metri dal piano campagna e lo spessore è di circa 7,0 metri.

- Argilla Limosa da molto consistente a dura

Costituito da argilla limosa da molto consistente a dura, di colore grigio, con screziature nerastre.

Il livello della falda acquifera, individuato durante le prove geognostiche, è stato misurato alla profondità di circa -2,40 metri dal p.c.. Tale piezometrica può subire oscillazioni fino al piano campagna in condizioni di particolari piovosità.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;
PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

MODELLO STRATIGRAFICO

PROFONDITÀ	STRATIGRAFIA	DESCRIZIONE
		2200:1:2:0:12

0.00		Materiale di origine
		Antropica
1.50 m		
	************	Limo argilloso di colore
		giallo-verdastro
		mediamente consistente
7.50 m		
		Argilla limosa da
		fortemente compressibile
		a mediamente
		consistente con livelli
		torbosi e/o sabbiosi
39.00 m		
	(606)	Ghiaia eterometrica
		Omaia otoromotroa
40.00		
46.00 m		
		Argilla Limosa da molto
		consistente a dura
>50.00 m		

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposo@arubapec.it;
PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

9. INQUADRAMENTO SISMOLOGICO

In seguito al ripetersi di eventi sismici calamitosi che hanno investito anche zone ritenute e classificate con la legge 64/74 non sismiche, per una ridefinizione del rischio sismico, è stata emanata, in data 20 Marzo 2003, l'ordinanza del Presidente del Consiglio dei Ministri n. 3274 recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" pubblicata sulla G.U. n. 105 del 8.5.2003. Alla stessa è allegata la nuova classificazione sismica del territorio nazionale, articolata in quattro zone, a sismicità alta media e bassa, la quarta zona, di nuova introduzione, è data facoltà alla Regione di imporre l'obbligo della progettazione antisismica. (http://zonesismiche.mi.ingv.it/pcm3274.html).

La classificazione sismica del territorio nazionale ha introdotto normative tecniche specifiche per le costruzioni di edifici, ponti ed altre opere in aree geografiche caratterizzate dal medesimo rischio sismico.

In basso è riportata la zona sismica per il territorio di Pescara, indicata nell'Ordinanza del Presidente del Consiglio dei ministri n. 3274/2003, aggiornata con la Delibera della Giunta Regionale dell'Abruzzo n. 438 del 29.03.2003.

Zona sismica	Descrizione	accelerazione con probabilità di superamento del 10% in 50 anni [a g]	accelerazione orizzontale massima convenzionale (Norme Tecniche) [ag]	numero comuni con territori ricadenti nella zona (*)
1	Indica la zona più pericolosa, dove possono verificarsi fortissimi terremoti.	ag > 0,25 g	0,35 g	703
2	Zona dove possono verificarsi forti terremoti.	0,15 < ag ≤ 0,25 g	0,25 g	2.225
3	Zona che può essere soggetta a forti terremoti ma rari.	$0.05 < a_0 \le 0.15 \text{ g}$	0,15 g	2.810
4	E' la zona meno pericolosa, dove i terremoti sono rari ed è facoltà delle Regioni prescrivere l'obbligo della progettazione antisismica.	ag ≤ 0,05 g	0,05 g	2.186

Figura 36 Pericolosità sismica definita nell'Ordinanza del PCM n. 3519/2006

STUDIO DI	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	50/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

In base alla stessa il territorio comunale di Pescara risulta classificato come **Zona** sismica 3 (Fig.37).

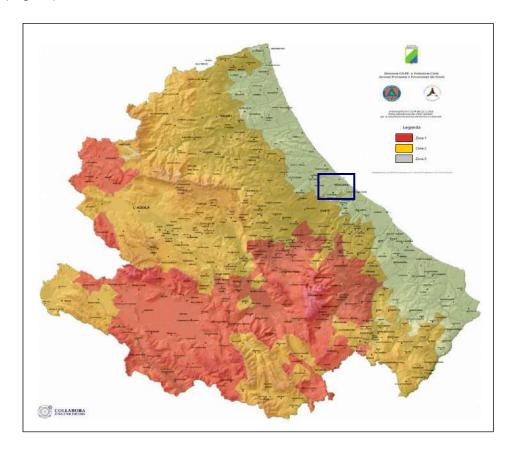


Figura 37 Carta della Sismicità (Regione Abruzzo)

In seguito a questa classificazione, che si ha per tutti i comuni italiani, è stato emanato un nuovo provvedimento che prevede l'adozione delle stime di pericolosità sismica del Progetto S1 nelle nuove Norme Tecniche per le Costruzioni. Lo studio è stato realizzato dall'INGV che ha messo a disposizione della comunità nazionale un prodotto che fosse scientificamente valido e avanzato e al tempo stesso immediatamente utilizzabile in provvedimenti normativi. L'importanza di questo provvedimento è legata al superamento del vecchio concetto di classificazione a scala comunale (pericolosità sismica uniforme su tutto il territorio nazionale) e sulla base di quattro zone sismiche.

Attraverso l'applicazione Webgis è possibile consultare in maniera interattiva le mappe di pericolosità sismica. In particolare, per la zona di Pescara si hanno dei valori

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;
P. IVA 02251610685 - C.F. PMPMTN90B19G438H

di accelerazione al suolo (con probabilità di eccedenza del 10% in 50 anni) pari a 0.150 - 0.175 a_g (accelerazione massima del suolo). I valori di a_g vengono forniti per un uso consapevole da parte degli utenti e non potranno essere commercializzati. Il loro utilizzo è effettuato sotto la responsabilità dell'utente.

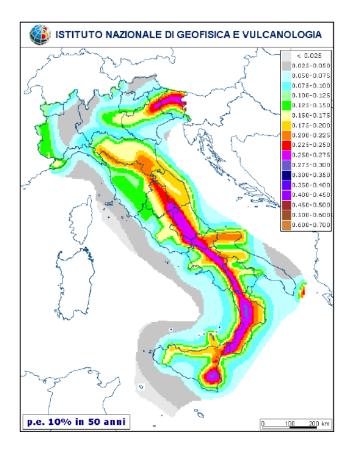


Figura 38 Carta della Pericolosità sismica d'Italia

Nella mappa interattiva di pericolosità sismica per la zona di Pescara (Fig.38) è stata indicata l'area considerata per l'analisi della disaggregazione del valore a_g con probabilità di eccedenza del 10% in 50 anni. Nell'analisi di disaggregazione si osservano i contributi delle possibili coppie di valori di magnitudo-distanza, ottenendo, inoltre, i valori medi di Magnitudo, Distanza ed Epsilon.

In particolare, l'accelerazione al suolo, così come definita dall'Ordinanza n.3907 Attuazione dell'articolo 11 del decreto-legge 28 aprile 2009 n. 39, convertito, con modificazioni, della legge 24 giugno 2009, n. 77, per il Comune di Pescara è pari ad **ag** = **0.151117 g.**

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	52/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

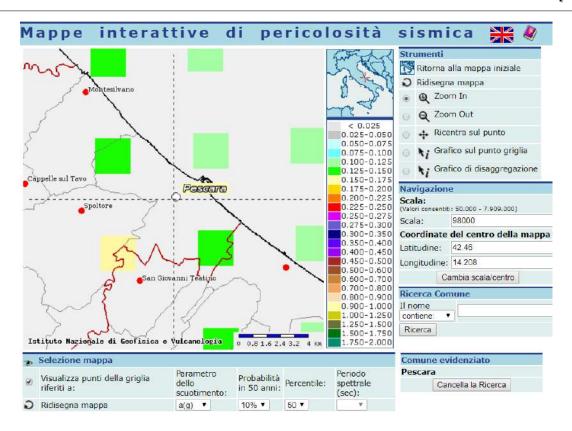


Figura 39 Mappa interattiva di pericolosità sismica http://esse1-gis.mi.ingv.it/

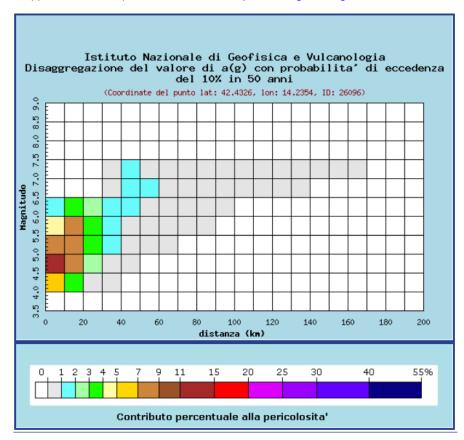


Figura 40 Diagramma di disaggregazione

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

COMPATIBILITÀ

GEOMORFOLOGICA

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

		Di	saggrega	zione del (Coordi	valore di nate del p						% in 50	anni
Distanza in	km		Magnitudo									
		3.5-4.	0 4.0-4.	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0	-10	0.00	0 6.88	13.900	8.920	4.870	1.960	0.000	0.000	0.000	0.000	0.000
10	-20	0.00	0 3.11	8.990	8.980	7.200	3.780	0.000	0.000	0.000	0.000	0.000
20	-30	0.00	0.33	2.010	3.340	3.880	2.660	0.000	0.000	0.000	0.000	0.000
30	-40	0.00	0.00	0.208	1.070	1.970	1.910	0.645	0.414	0.000	0.000	0.000
40	-50	0.00	0.00	0.002	0.183	0.959	1.490	1.410	1.010	0.000	0.000	0.000
50	-60	0.00	0.00	0.000	0.012	0.298	0.843	1.120	0.920	0.000	0.000	0.000
60	-70	0.00	0.00	0.000	0.000	0.053	0.411	0.776	0.722	0.000	0.000	0.000
70	-80	0.00	0.00	0.000	0.000	0.007	0.157	0.508	0.534	0.000	0.000	0.000
80	-90	0.00	0.00	0.000	0.000	0.001	0.044	0.326	0.395	0.000	0.000	0.000
90-:	100	0.00	0.00	0.000	0.000	0.000	0.004	0.150	0.233	0.000	0.000	0.000
100-:	110	0.00	0.00	0.000	0.000	0.000	0.000	0.065	0.151	0.000	0.000	0.000
110-:	120	0.00	0.00	0.000	0.000	0.000	0.000	0.017	0.066	0.000	0.000	0.000
120-:	130	0.00	0.00	0.000	0.000	0.000	0.000	0.003	0.025	0.000	0.000	0.000
130-:	140	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.011	0.000	0.000	0.000
140-:	150	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000
150-:	160	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
160-:	170	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
170-:	180	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
180-:	190	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
190-2	200	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Va	lori	medi										
Magnitudo	Dist	tanza	Epsilon									
5.420	19	.700	0.966									

Figura 41 Tabella dati di disaggregazione

L'area investigata ricade nelle zone perimetrate dallo studio di Microzonazione sismica di primo livello del Comune di Pescara, commissionato dalla Regione Abruzzo (vedi Fig.42).

Il sito di progetto ricade in un'area suscettibile di amplificazione locale 2007, ed inoltre nell'area ZALQ 1 ovvero, Zona di attenzione per instabilità da liquefazione, con possibili importanti variazioni tridimensionali alla scala di sito delle caratteristiche geotecniche dei materiali fini alluvionali (es. torbe e argille organiche), che potrebbero determinare fenomeni di cedimenti e con possibili lenti discontinue di materiale granulare potenzialmente liquefacibili.

Per tale area sono fortemente raccomandati tutti gli approfondimenti necessari al

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	54/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

fine di definire tali possibili elementi di instabilità.

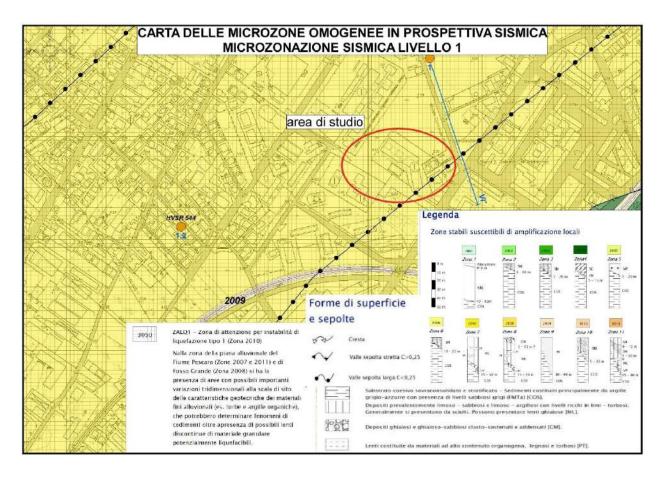


Figura 42 - Carta delle Microzone Omogenee in Prospettiva sismica MOPS Microzonazione Sismica I livello della Regione Abruzzo (scala 1:5.000).

9.1. SUSCETTIBILITÀ ALLA LIQUEFAZIONE

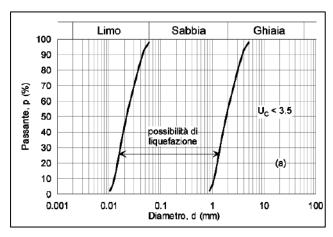
Fenomeni di instabilità del terreno durante i terremoti, come la liquefazione, è una delle più importanti cause di danneggiamento e collasso delle costruzioni fondate su terreni sabbiosi saturi. Alla liquefazione del terreno possono infatti associarsi estesi fenomeni di subsidenza, movimenti di masse fluidificate di terreno, ecc., ma anche effetti meno devastanti (cedimenti differenziali, lesioni negli edifici, ecc.) che tuttavia possono produrre gravissimi danni al patrimonio abitativo e artistico di una località.

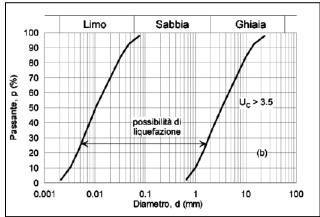
La liquefazione di un deposito è il risultato dell'effetto combinato di due principali fattori: le condizioni del terreno (fattore di predisposizione) e la sismicità (fattore scatenante).

STUDIO DI	
COMPATIBILITÀ	
COMPATIBILITA	
GEOMORFOLOGICA	

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714


e-mail: geologo.pomposomartin@gmail.com;

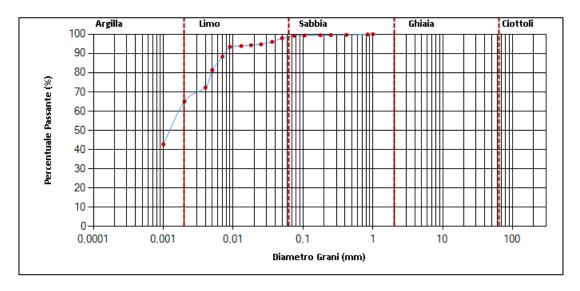

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

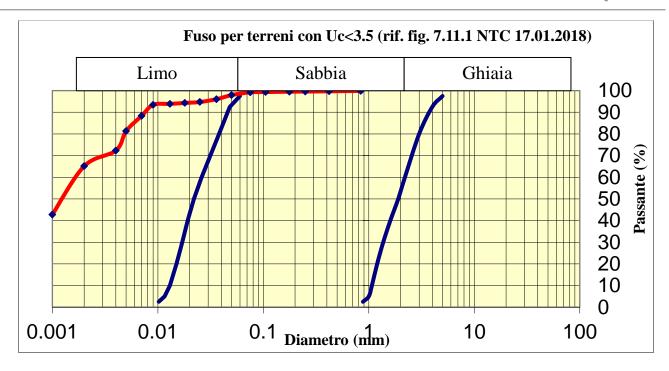
Il D.M. 17.01.2018, CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP, al paragrafo 7.11.3.4, stabilisce che "il sito presso il quale è ubicato l'edificio deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate" e che (Punto 7.11.3.4.2) "La verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- 1. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1)60 > 30 oppure qc1N > 180 dove (N1)60 è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 KPa e qc1N è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 KPa;
- 4. distribuzione granulometrica esterna alle zone indicate nella Figura 7.11.1(a) nel caso di terreni con coefficiente di uniformità Uc < 3,5 ed in Figura 7.11.1(b) nel caso di terreni con coefficiente di uniformità Uc > 3,5."

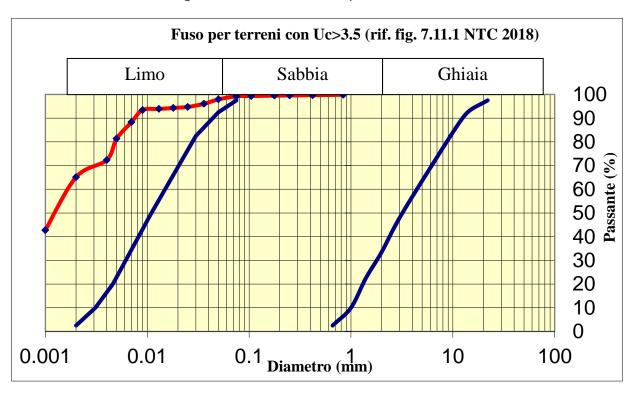
Fusi granulometrici di terreni suscettibili di liquefazione


Al Punto 7.11.3.4.3. del suddetto D.M. viene stabilito che "Quando nessuna delle condizioni del § 7.11.3.4.2 risulti soddisfatta e il terreno di fondazione

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	56/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	


comprenda strati estesi o lenti spesse di sabbie sciolte sotto falda, occorre valutare il coefficiente di sicurezza alla liquefazione alle profondità in cui sono presenti i terreni potenzialmente liquefacibili."

Nel caso specifico, come emerge dalle stratigrafie riportate in allegato, i depositi che caratterizzano il sedime di progetto hanno caratteristiche granulometriche riferibili ad argille con limo e limi con argille.


Di seguito si riporta la curva granulometrica riferita al Campione indisturbato prelevato nella prova CPT1 alla profondità di 4.0-5.2 metri dal p.c.

Da tale prova di laboratorio emerge che il fuso granulometrico ricade all'esterno dei fusi indicati nella normativa vigente, come è possibile vedere nella sovrapposizione delle immagini seguenti.

Curva granulometrica su fuso per terreni con Uc <3.5

Curva granulometrica su fuso per terreni con Uc >3.5

In rosso viene riportato il fuso granulometrico del sito di progetto.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	58/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Per quanto detto, secondo quanto riportato nel Punto 7.11.3.4.2 del D.M. 17.01.2018, CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL. PP, si esclude la verifica di suscettibilità alla liquefazione, poiché si manifesta il punto 4.

Nonostante tale considerazione, in allegato si riporta la verifica alla liquefazione eseguita con software di calcolo dedicato il quale dimostra un rischio da basso a molto basso.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

PEC: martin.pomposo@arubapec.it;

10. ANALISI DI COMPATIBILITÀ GEOMORFOLOGICA

Dopo aver fatto un inquadramento generale dell'area di studio sia in scala regionale che locale, vengono riportate in dettaglio le caratteristiche dell'area di studio, come richiesto nelle "LINEE GUIDA REGIONALI – versione 1.0 Allegato A, con deliberazione n. 108 del 22/02/2018".

La compatibilità delle previsioni urbanistiche con le condizioni geomorfologiche del sito è stata verificata preliminarmente dai contenuti del Piano stralcio di bacino per l'Assetto idrogeologico PAI e del Piano Stralcio di bacino difesa alluvioni PSDA (vedi cap. 6.1) secondo le leggi L.N. 183/89 e L.R. 81/89.

10.1. GEOLOGIA DI DETTAGLIO

Nell'area di studio è stato effettuato uno studio geologico di dettaglio, mediante un rilievo di superficie ed un'analisi delle indagini ivi presenti, a disposizione dello scrivente.

Pertanto, nel capitolo "5.1 assetto geologico locale" vengono riportate le cartografie di riferimento, gli schemi stratigrafici e tettonici generali e nel capitolo "8.1 modello stratigrafico" viene riportata la sequenza stratigrafica locale.

Di seguito, ed in allegato, si riporta una carta geologica di dettaglio, nella quale è possibile vedere che sul sito oggetto di studio vi sono litotipi riferibili a depositi prevalentemente limoso-sabbiosi e limoso argillosi con livelli ricchi di limi-torbosi molto compressibili. Generalmente si presentano sciolti. Possono presentare lenti ghiaiose. Sotto ad essi vi sono depositi ghiaiosi-sabbiosi clasto-sostenuti e addensati. Infine troviamo il substrato coesivo sovraconsolidato e stratificato. Le argille grigio azzurre, con presenza di livelli sabbiosi grigi. Tale area, quindi, vista la presenza della falda prossima al piano campagna e visti i litotipi rientra nelle zone di attenzione per liquefazione.

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

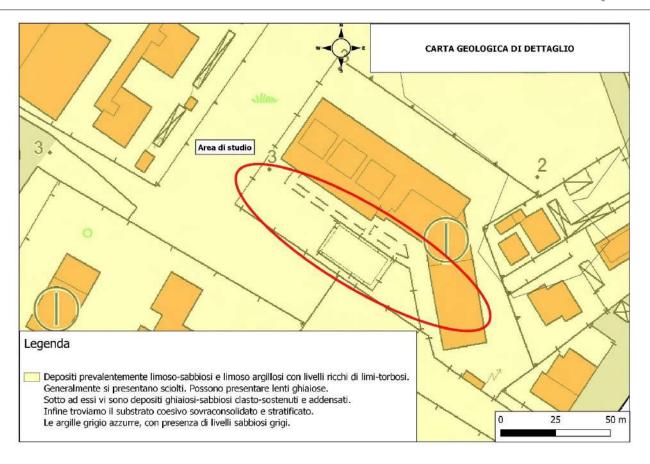


Figura 43 Carta geologica di dettaglio

Inoltre è stata eseguita una sezione litostratigrafica di dettaglio dell'area.

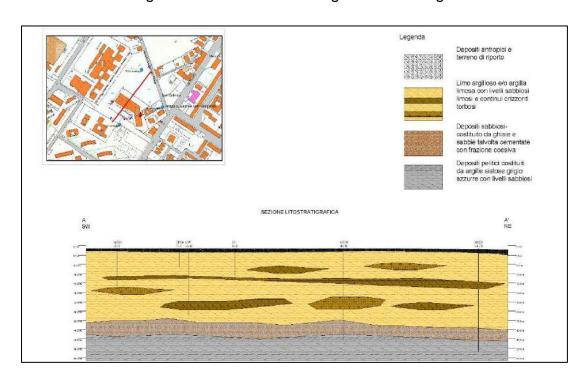


Figura 44 Sezione litostratigrafica di dettaglio

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

10.2. GEOMORFOLOGIA DI DETTAGLIO

Per quanto riguarda lo studio geomorfologico si chiarisce che come riportato nei capitoli "6. inquadramento geomorfologico" e "6.1 assetto geomorfologico locale" della presente relazione, nel sito di progetto non vi sono forme gravitative perimetrate all'interno del Piano PAI ne censite all'interno dell'Inventario Fenomeni Franosi Italiani Catalogo IFFI.

Inoltre si fa presente che l'area di studio è sub-pianeggiante, con pendenze inferiore a 10°.

10.3. ANALISI DELLA SISMICITÀ LOCALE

L'area rientra nella zona suscettibile di amplificazione 2007, ovvero, depositi prevalentemente limoso-sabbiosi e limoso argillosi con livelli ricchi di limi-torbosi molto compressibili. Generalmente si presentano sciolti e possono presentare lenti ghiaiose. Sotto ad essi vi sono depositi ghiaiosi-sabbiosi clasto-sostenuti e addensati.

Infine troviamo il substrato coesivo sovraconsolidato e stratificato. Le argille grigio azzurre. con presenza di livelli sabbiosi grigi. (vedi *Cap 9. Inquadramento sismologico*)

Inoltre, Il sito di progetto ricade in un'area, denominata ZALQ 1 Zona di attenzione per instabilità da liquefazione, con possibili importanti variazioni tridimensionali alla scala di sito delle caratteristiche geotecniche dei materiali fini alluvionali (es. torbe e argille organiche), che potrebbero determinare fenomeni di cedimenti e con possibili lenti discontinue di materiale granulare potenzialmente liquefacibili.

A tal fine, nel capitolo "9.1.suscettibilità alla liquefazione" viene riportato un approfondimento riguardo la liquefazione.

Quest'analisi preliminare mette in evidenzia il fatto che, secondo quanto riportato nel Punto 7.11.3.4.2 del D.M. 17.01.2018, CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL. PP, si esclude la verifica di suscettibilità alla liquefazione, poiché si manifesta il punto 4.

In aggiunta, con i dati a disposizione, tra cui i dati granulometrici del campione e della prova penetrometrica statica CPT profonda, è stata eseguita una verifica a liquefazione con software dedicato, che evidenzia un rischio da molto basso a basso.

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Inoltre, vista la natura dei sedimenti, la sismicità dell'area e la presenza di falda prossima al piano campagna è importante durante le fasi di progettazione, considerare tali aspetti.

10.4. CONDIZIONI IDRAULICHE

L'area di studio, come pubblicato sul sito dell'Autorità di Bacino della Regione Abruzzo, negli aggiornamenti della cartografia del piano stralcio di bacino per la difesa da alluvioni PSDA del 17/03/2021 non rientra nelle aree a pericolosità idraulica, mentre a poche decine di metri a nordest, al di fuori delle aree di interesse, è perimetrata una pericolosità moderata.

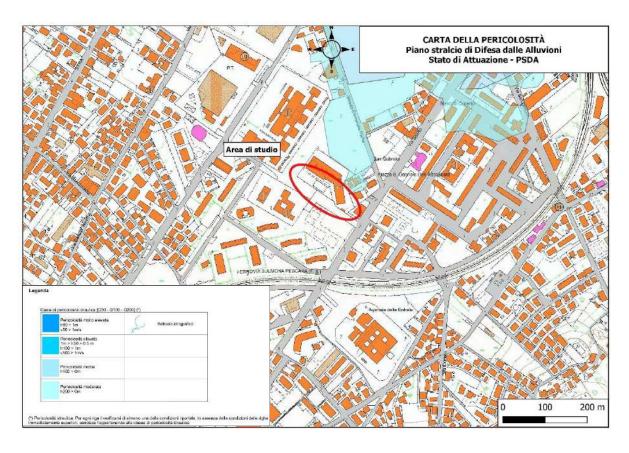


Figura 45 – Carta della Pericolosità riferita al Piano stralcio di difesa dalle alluvioni in attuazione PSDA

In funzione di quanto sopra, l'opera non modifica le condizioni idrauliche ne altera il regime idraulico in previsione delle nuove modifiche urbanistiche poiché al di fuori delle aree a pericolosità.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	63/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

10.5. INDAGINI GEOTECNICHE E GEOFISICHE

Nel capitolo 2. Metodologia vengono descritte le indagini analizzate. Queste verranno riportate in allegato al presente studio con le specifiche delle strumentazioni utilizzate.

10.6. DOCUMENTAZIONE VEGETALE

L'area di interesse, dalla Carta dell'uso del suolo livello 4 anno 2013 pubblicata dalla Regione Abruzzo, rientra in un sito caratterizzato da insediamento di grandi impianti di servizi pubblici e privati.

Di seguito si riporta uno stralcio.

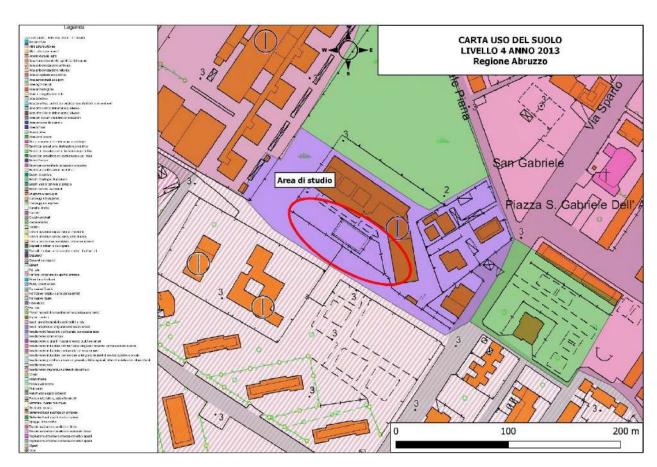


Figura 46 carta uso del suolo anno 2013 livello 4 Regione Abruzzo

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

10.7. VINCOLI TERRITORIALI

Nel capitolo "6.1 assetto geomorfologico locale" viene riportata la cartografia relativa al Vincolo idrogeologico. L'area di studio non rientra in esso.

Come già detto nei sopracitati paragrafi, il sito non rientra nelle aree perimetrate dai Vincoli PAI e PSDA.

L'area di studio non rientra neanche nei perimetri degli incendi boschivi censiti dalla Regione Abruzzo. (vedi carta a seguire).

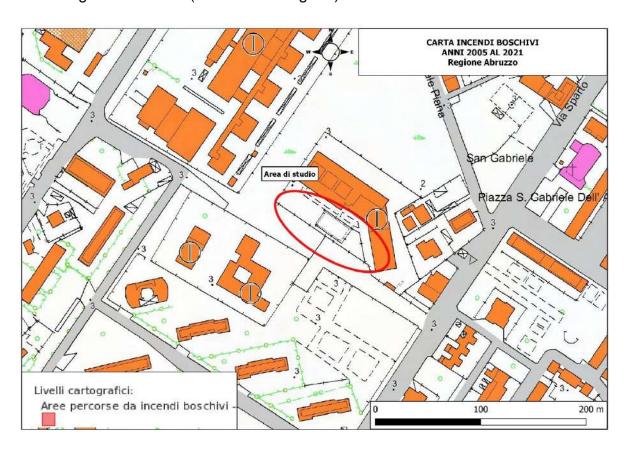


Figura 47 Carta degli incendi anni 2005 al 2021 della Regione Abruzzo

10.8. ANALISI DELLA PERICOLOSITÀ

Dall'analisi e dalla comparazione degli elementi precedentemente acquisiti, considerando quindi le valutazioni geologiche, sismiche, vegetazionali e i vincoli territoriali, non emergono particolari aspetti di pericolosità del territorio fatto salvo quanto sotto descritto.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI COMPATIBILITÀ	Cell. +39 392-5705714 e-mail: geologo.pomposomartin@gmail.com;	65/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

In particolare, vista la mancanza di segnalazione nel piano PAI e nel catalogo IFFI, vista inoltre le pendenze dell'area inferiore a 10°, attualmente si escludono fenomeni di franosità e di erosione accelerata.

Per quanto riguarda la pericolosità da alluvione l'area ricade al di fuori degli studi aggiornati a marzo 2021 del PSDA.

Mentre per quanto riquarda gli aspetti geotecnici e sismici va tenuto conto della stratigrafia dei primi 45-50 m dall'attuale p.c. ove sono presenti limi argillosi con intercalazioni di materiali torbidici compressibili mentre dal punto di vista sismico, come da carta delle MOPS, l'area viene classificata come suscettibile di amplificazione locale.

Di seguito si riporta uno stralcio della carta della pericolosità del territorio.

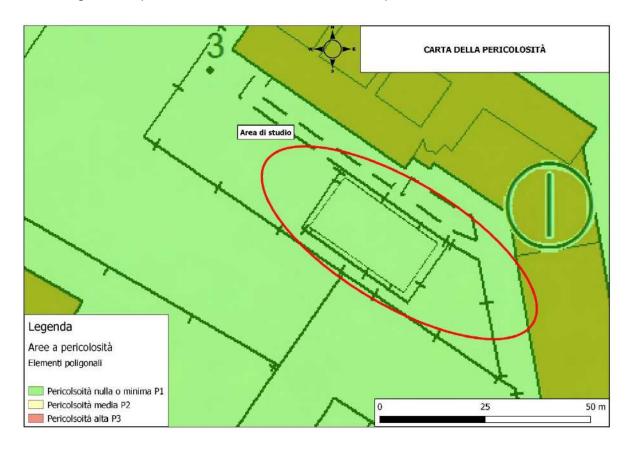


Figura 48 Carta delle pericolosità

Nell'area di studio, come specificato precedentemente, vi sono peculiarità legate alle caratteristiche geotecniche dei terreni, ed all'amplificazione sismica locale, di consequenza a pericolosità minima.

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

1.1. IDONEITÀ TERRITORIALE

L'area di studio risulta, di conseguenza, idonea per l'opera in oggetto.

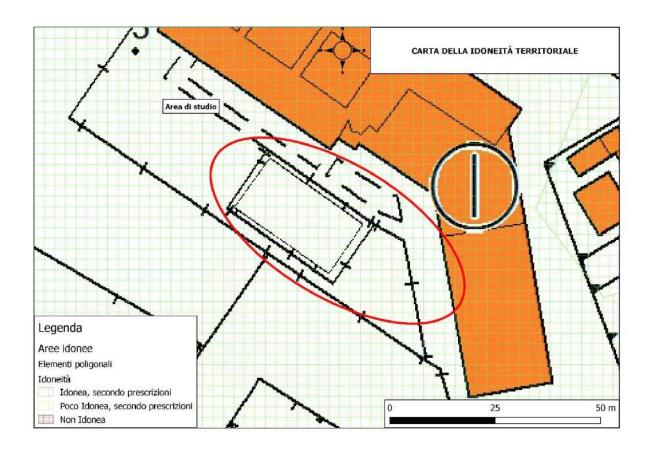


Figura 49 Carta della idoneità Territoriale

Detto questo, l'area di studio è compatibile geomorfologicamente con l'intervento richiesto, inoltre, vista la natura dei sedimenti, la sismicità dell'area e la presenza di falda prossima al piano campagna è importante durante le fasi di progettazione, considerare tali aspetti.

Considerate le caratteristiche fisico-meccaniche dei litotipi, la presenza di falda a pochi metri dal piano campagna e l'alta sismicità dell'area, non si escludono, in occasione di forti terremoti, fenomeni deformativi a carattere volumetrico dovuto all'aumento delle sovrappressioni interstiziali dei terreni sottostanti l'edificio.

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;

PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

2. CONCLUSIONI

L'Amministrazione Provinciale di Pescara ha affidato al sottoscritto un incarico per uno studio di compatibilità geomorfologica a supporto dei "Lavori di realizzazione polo didattico e laboratorio Liceo MIBE "Misticoni-Bellisario" viale Einaudi Pescara".

Tale studio, è stato redatto come richiesto, in conformità delle LINEE GUIDA REGIONALI – versione 1.0 Allegato A, con deliberazione n. 108 del 22/02/2018".

Il presente studio è finalizzato ad una valutazione delle seguenti caratteristiche:

- Le litologie affioranti;
- Ricostruzione di un modello geologico locale;
- Ricostruzione di un modello geomorfologico locale;
- Ricostruzione di un modello idrologico ed idrogeologico locale.
- Ricostruzione di un modello sismico locale;
- Analisi sulle indagini geognostiche, geotecniche e sismiche;
- Valutazione della pericolosità di base.

Per suddetto progetto, vengono utilizzate diverse campagna indagini. La prima è costituita da n.1 prove penetrometriche dinamiche superpesanti (DPSH), n.1 sondaggio geognostico a carotaggio continuo con prelievo di n. 2 campioni indisturbati, ed esecuzione di n.1 prova di sismica superficiale di tipo MASW. Tale rapporto sulle indagini, con le specifiche delle attrezzature utilizzate, è stato effettuato dalla Società Geotecnica Ricci, riportato in allegato della presente relazione.

In aggiunta, una prova penetrometrica statica (C.P.T.) spinta fino a 35.60 metri dal p.c. e n.1 prelievo di campione indisturbato sottoposto a prove di laboratorio. Tale campagna integrativa di indagini, è stata effettuata dalla Società Geoland s.a.s.; in allegato si riportano i risultati e le specifiche delle attrezzature utilizzate.

Il sito di progetto, si colloca sul settore meridionale del territorio comunale di Pescara, identificato nel Foglio catastale 31 del Comune di Pescara Particella 3528.

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	68/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Per tale studio, vengono ora utilizzate informazioni e dati da riferire a rilievi geologici e geomorfologici di superficie, studi ed indagini precedentemente elencate, nonché dalle conoscenze geologiche dello scrivente. Sono stati consultati gli studi di Microzonazione Sismica di livello 1. Per quanto riguarda la Carta delle MOPS l'area ricade in zona suscettibile di amplificazione 2007 e zona ZALQ 1 Zona di attenzione per instabilità da liquefazione, con possibili importanti variazioni tridimensionali alla scala di sito delle caratteristiche geotecniche dei materiali fini alluvionali (es. torbe e argille organiche), che potrebbero determinare fenomeni di cedimenti e con possibili lenti discontinue di materiale granulare potenzialmente liquefacibili. Nell'area di studio sono presenti acquisizioni H/Vsr con valori di picco variabile da 1.0 a 1.2 Hz.

L'area di progetto, come già spiegato nei capitoli precedenti, ricade all'esterno di aree con vincoli PAI (Pericolosità e Rischio), del vincolo di idraulico PSDA (Pericolosità e Rischio) ed all'esterno di aree perimetrate dal Vincolo Idrogeologico.

Per le caratteristiche litostratigrafiche si fa riferimento al CAPITOLO 8. Il livello della falda acquifera è stato riportato nella prova CPT1 alla profondità di -2.40 m dal p.c. Detto ciò, come spiegato nel capitolo 7.1 IDROLOGIA ED IDROGEOLOGIA LOCALE, nell'area di studio non si esclude la presenza di una o più falde acquifere superficiali, che oscillano durante l'anno fino a raggiungere il piano campagna..

La carta delle pendenze permette di calcolare la classe topografica di base, in riferimento alle norme tecniche delle costruzioni (NTC-2018 Cap. 3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE). La classe topografica dell'area è T1.

Per quanto riguarda la classificazione sismica, sono state utilizzate e rielaborate, secondo la Normativa vigente (NTC2018), le acquisizioni delle prove di sismica superficiale di tipo MASW, acquisite nell'anno 2011 dalla Geotecnica Ricci. Sono state calcolate le VS,eq dal profilo di velocità riportato nel rapporto sulle indagini.

Detto questo, la categoria di sottosuolo risulta essere C, ma tenendo conto del piano di posa delle fonazioni superficiali ed escludendo il primo metro di materiale migliorato ed anche sulla base delle conoscenze dello scrivente si ritiene la velocità Vs, dei limi organici al limite con la categoria inferiore, cautelativamente si consiglia una

	Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)	
STUDIO DI	Cell. +39 392-5705714	
COMPATIBILITÀ	e-mail: geologo.pomposomartin@gmail.com;	69/70
GEOMORFOLOGICA	PEC: martin.pomposo@arubapec.it;	
	P. IVA 02251610685 - C.F. PMPMTN90B19G438H	

Categoria di sottosuolo D.

Nel capitolo 10, e relativi sotto capitoli, vengono esposte le considerazioni riguardo la compatibilità geomorfologica dell'intervento in oggetto.

Queste osservazioni si raccomandano a tutela della salvaguarda del patrimonio edilizio e per la sicurezza di chi lo abita.

Si resta a disposizione per eventuali chiarimenti.

DATA

28/11/2022

Eirma

Dott. Geol. Martin Pomposo

STUDIO DI COMPATIBILITÀ GEOMORFOLOGICA

3. BIBLIOGRAFIA E SITOGRAFIA

Agenzia delle Entrate © 2022 mappa catastale.

Bigi et al., 1995-1997;

Calamita et al., 2004;

Carta del vincolo idrogeologico, in cui sono state riportate le aree vincolate ai sensi dell'art.1 del r.d.30/12/23 n.3267;

Cartografia di base IGM 100.000 – 25.000 regioni zona wgs84-utm33;

Carta idrogeologica redatta dalla regione Abruzzo;

Carta tecnica regionale del 2007;

Carta della pericolosità sismica d'Italia;

Carta geologica del servizio geologico d'Italia a scala 1:100.000 (fogli 140-141, Teramo-Pescara);

Carta geologica dell'Abruzzo di I. Vezzani & f. Ghisetti, 1: 100.000 (foglio est);

Carta geologica d'Italia progetto Carg in scala 1:50.000 (foglio PESCARA) e note illustrative;

Carta geologico – tecnica in scala 1:5.000 della Microzonazione sismica di primo livello (della Regione Abruzzo e dipartimento di protezione civile);

Centamore & Nisio, 2003;

Casnedi et al., 1994;

D'alessandro et al., 2003;

Faccenna et al., 2014;

Mappa interattiva di pericolosità sismica (http://esse1-gis.mi.ingv.it/);

Pizzi 2003;

PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO DEI BACINI DI RILIEVO REGIONALE ABRUZZESI E DEL BACINO INTERREGIONALE DEL FIUME SANGRO L.18.05.1989 n.183 art.17 comma 6 ter. edito dalla REGIONE ABRUZZO DIREZIONE TERRITORIO URBANISTICA, BENI AMBIENTALI, PARCHI, POLITICHE E GESTIONE DEI BACINI IDROGRAFICI – Servizio Difesa del Suolo – Autorità dei Bacini Regionali L.R. 16.09.1998 n.81 e L.R. 24.08.2001 n.43)

PROGETTO IFFI (inventario dei fenomeni franosi in Italia), realizzato dall'ISPRA e dalle regioni e province autonome;

Scisciani et al., 2002;

(http://zonesismiche.mi.ingv.it/pcm3274.html).

(https://ugeo.urbistat.com/adminstat/it/it/classifiche/densita-demografica/comuni).

Indagini della Società Geotecnica Ricci.

Indagini della Società Geoland sas.

STUDIO DI
COMPATIBILITÀ
GEOMORFOLOGICA

Civitella Casanova, contrada Pettorano, 36 - 65010 (PE)

Cell. +39 392-5705714

e-mail: geologo.pomposomartin@gmail.com;
PEC: martin.pomposo@arubapec.it;

P. IVA 02251610685 - C.F. PMPMTN90B19G438H

CARTA TOPOGRAFICA

Istituto Geografico Militare (scala 1:25.000)

CARTA COROGRAFICA

Carta Tecnica Regionale 2007 (scala 1:5.000)

CARTA GEOLOGICA D'ITALIA

Progetto CARG Foglio 351 PESCARA (scala 1:50.000)

CARTA DEL VINCOLO IDROGEOLOGICO

Corpo Forestale dello Stato (scala 1:5.000)

CARTA GEOMORFOLOGICA

Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

CARTA DELLA PERICOLOSITÀ

Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

CARTA DEL RISCHIO

Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

CARTA DELLA PERICOLOSITÀ DA ALLUVIONI

Stato di Attuazione (PSDA) Piano stralcio di difesa dalle alluvioni (scala 1:) .000)

CARTA DELLE PENDENZE

(scala 1:5.000)

CARTA GEOLOGICO-TECNICA

MZS 1 DELLA REGIONE ABRUZZO (scala 1:5.000)

CARTA MICROZONE OMOGENEE IN PROSPETTIVA SISMICA

MZS 1 DELLA REGIONE ABRUZZO (scala 1:5.000)

CARTA DELLE INDAGINI

(scala 1:500)

CARTA GEOLOGICA DI DETTAGLIO

(scala 1:1.000)

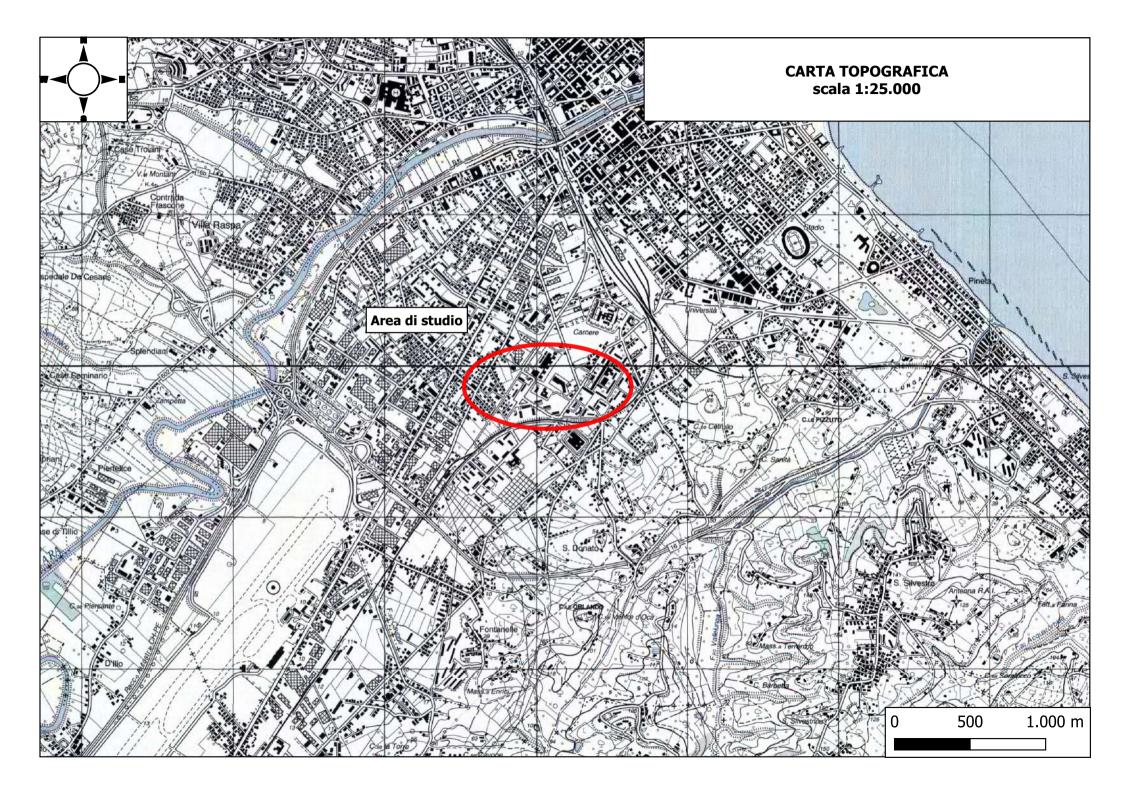
SEZIONE LITOSTRATIGRAFICA

(scala 1:1.000)

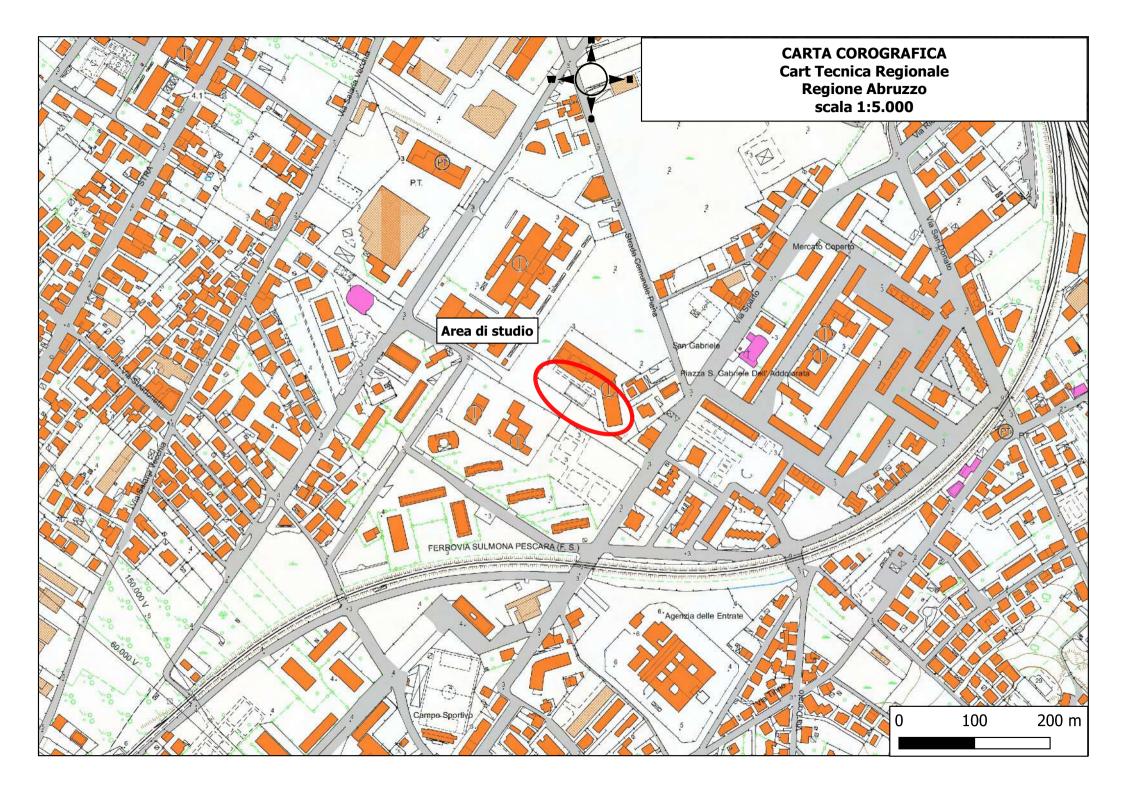
CARTA USO DEL SUOLO

Regione Abruzzo (scala 1:&000)

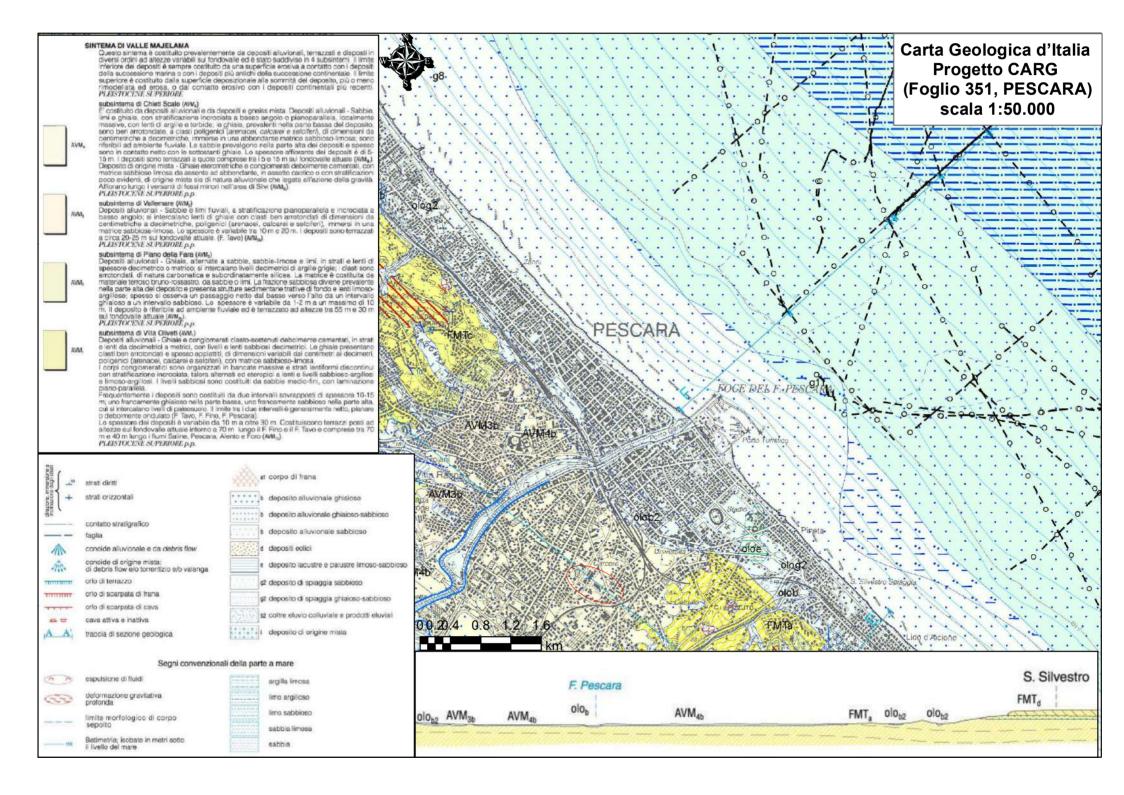
CARTA DELLA PERICOLSOITÀ

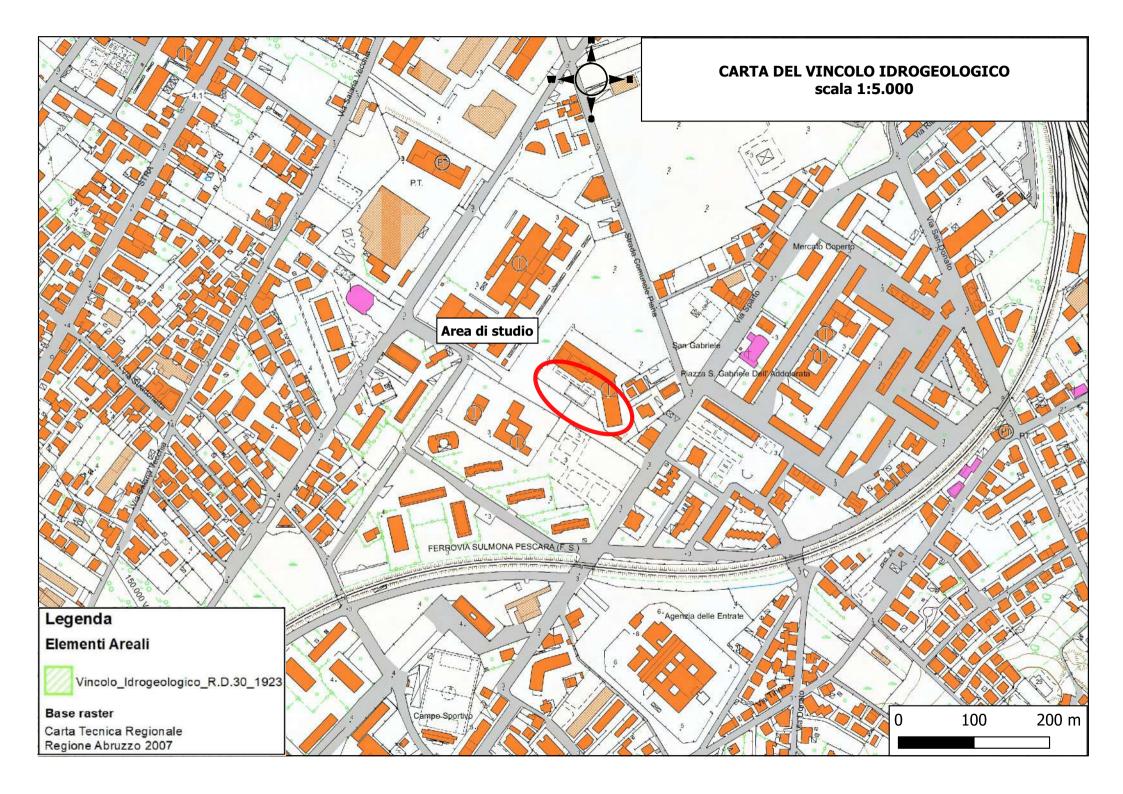

scala 1:500

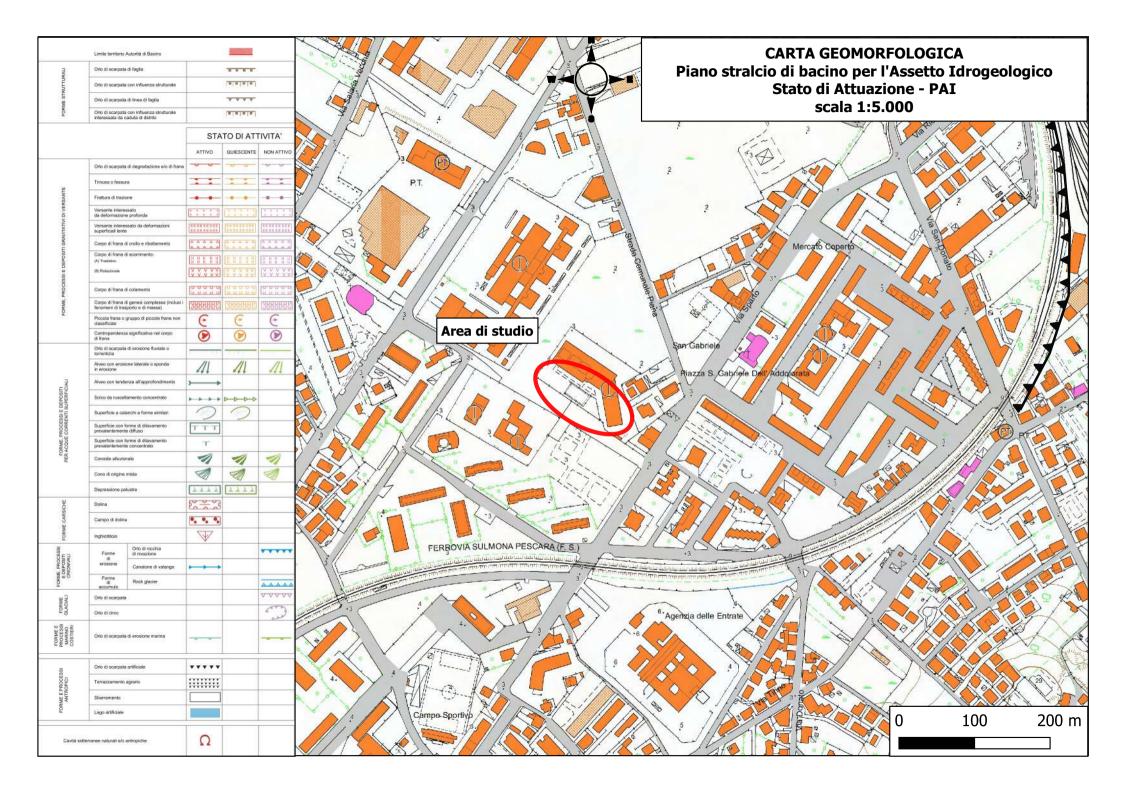
CARTA DELLA IDONEITÀ TERRITORIALE

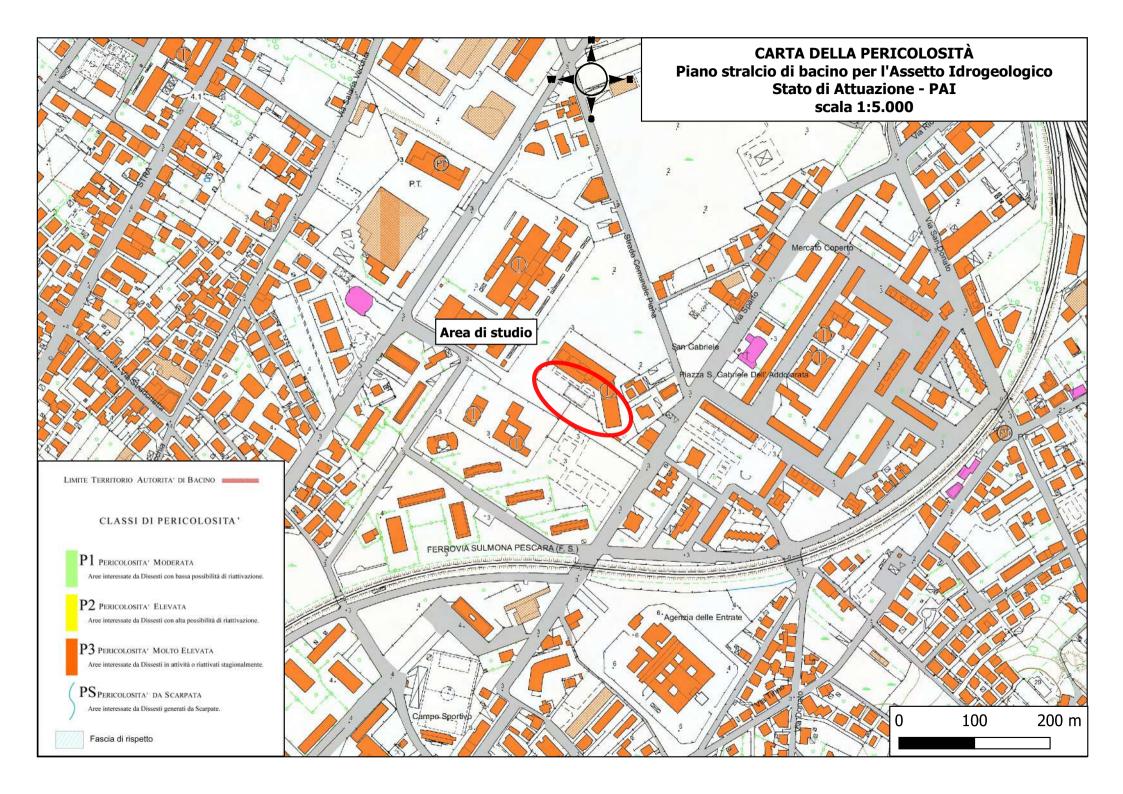

scala 1:1.000

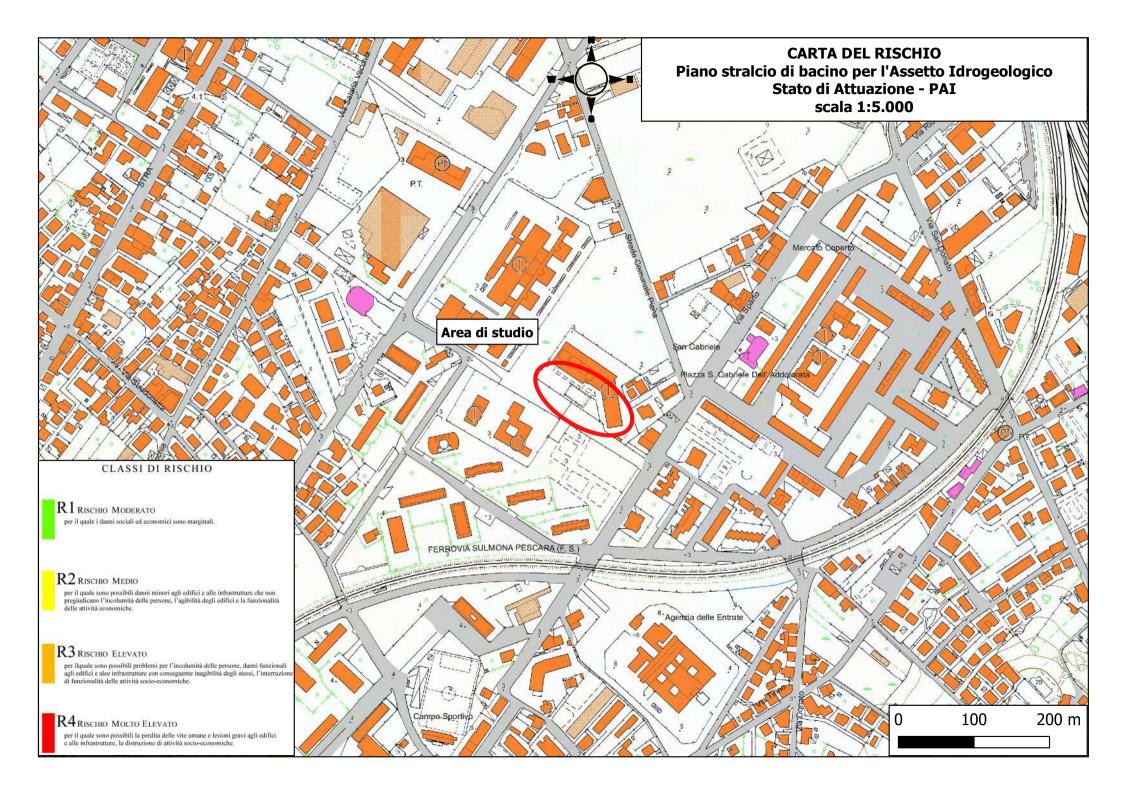
RAPPORTO SULLE INDAGINI DI RIFERIMENTO

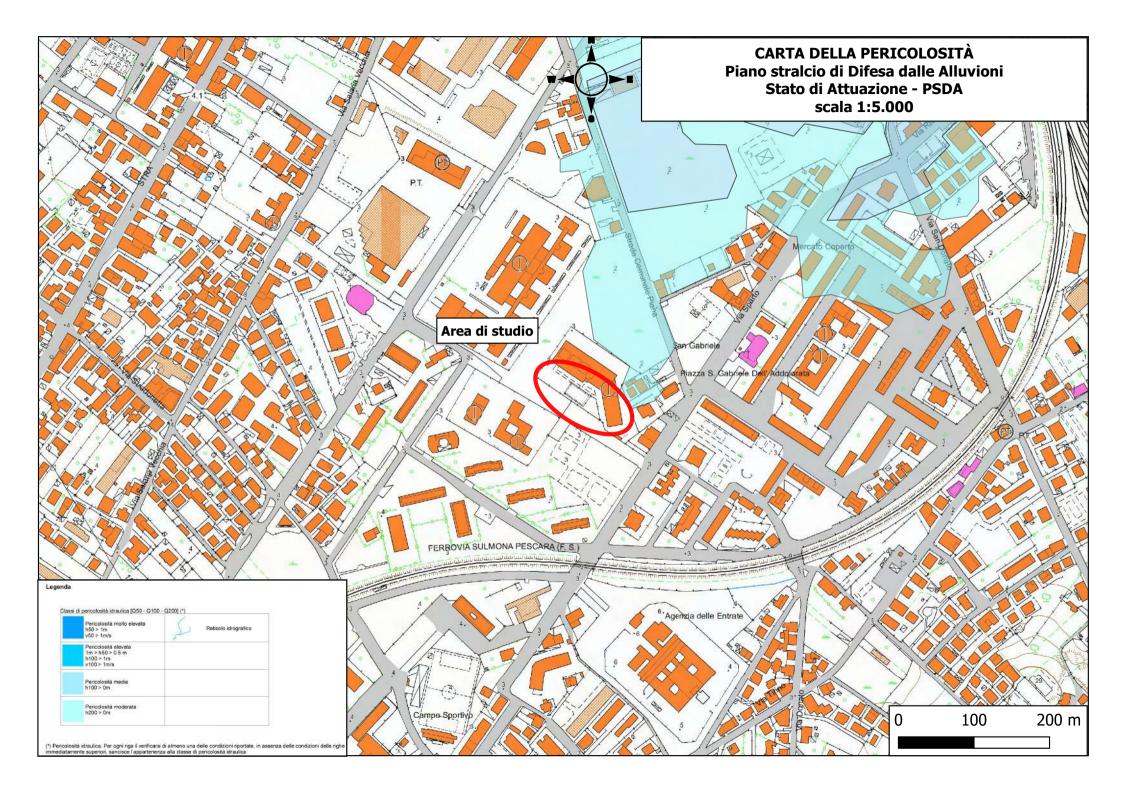

CARTA TOPOGRAFICA Istituto Geografico Militare (scala 1:25.000)

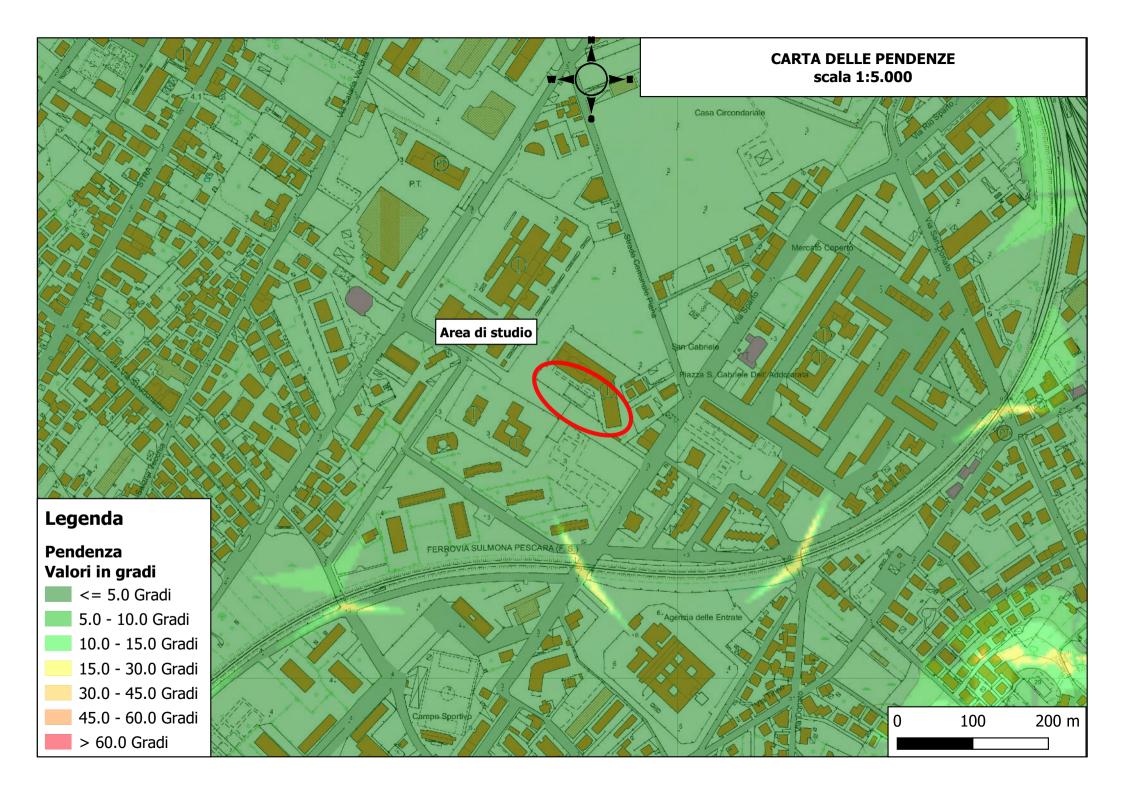

CARTA COROGRAFICA	
Carta Tecnica Regionale 2007 (scala 1:5.000)	

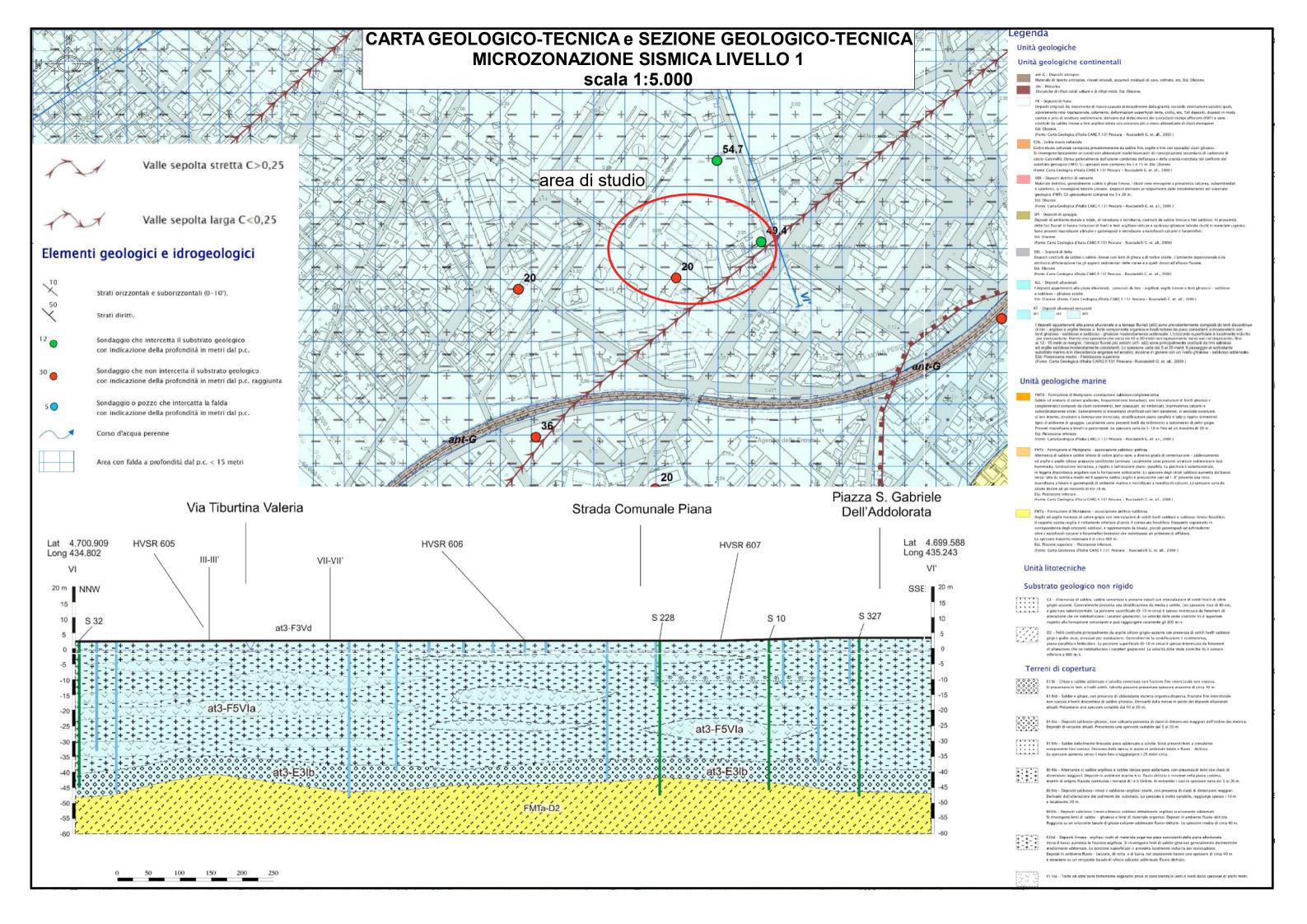

CARTA GEOLOGICA D'ITALIA Progetto CARG Foglio 351 PESCARA (scala 1:50.000)

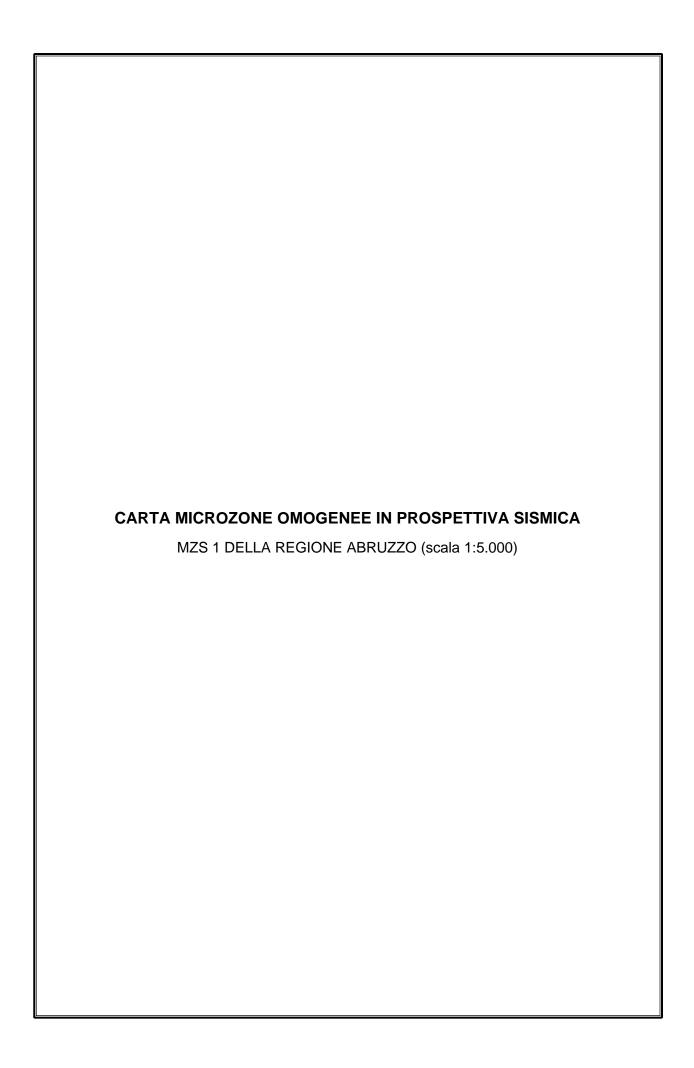

CARTA DEL VINCOLO IDROGEOLOGICO
Corpo Forestale dello Stato (scala 1:5.000)

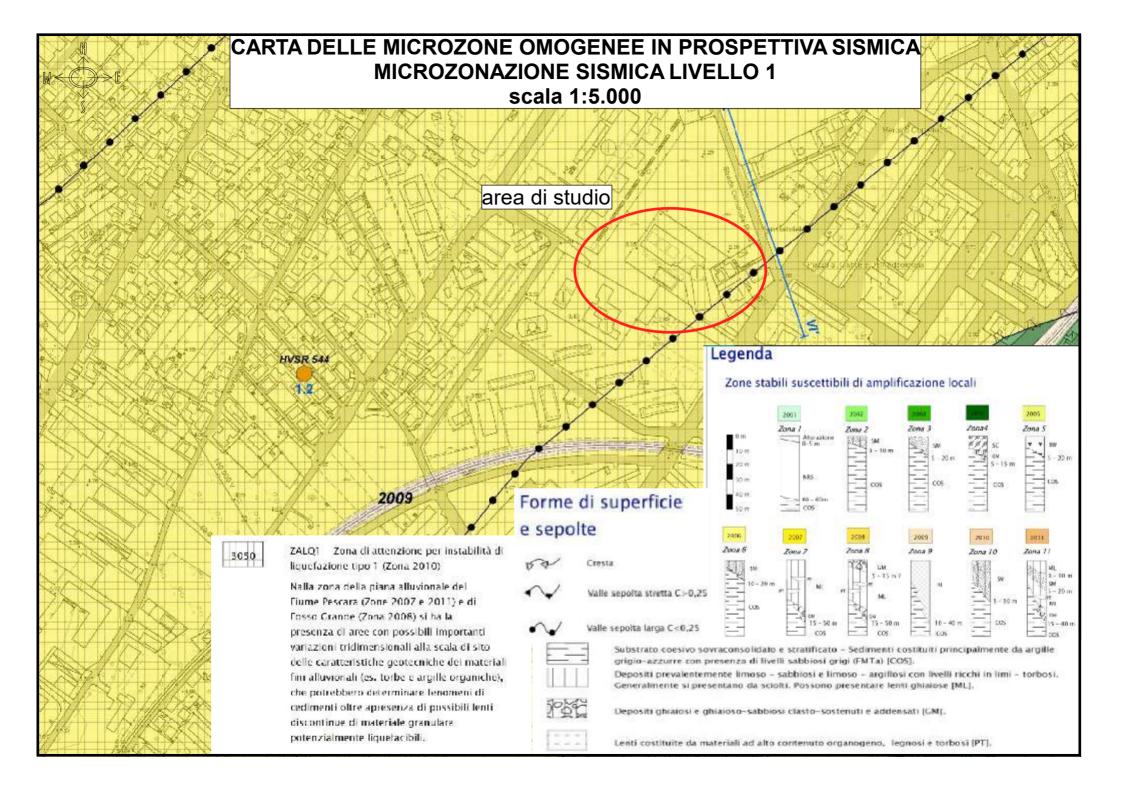

CARTA GEOMORFOLOGICA
CARTA GEOMORI GEOGICA
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

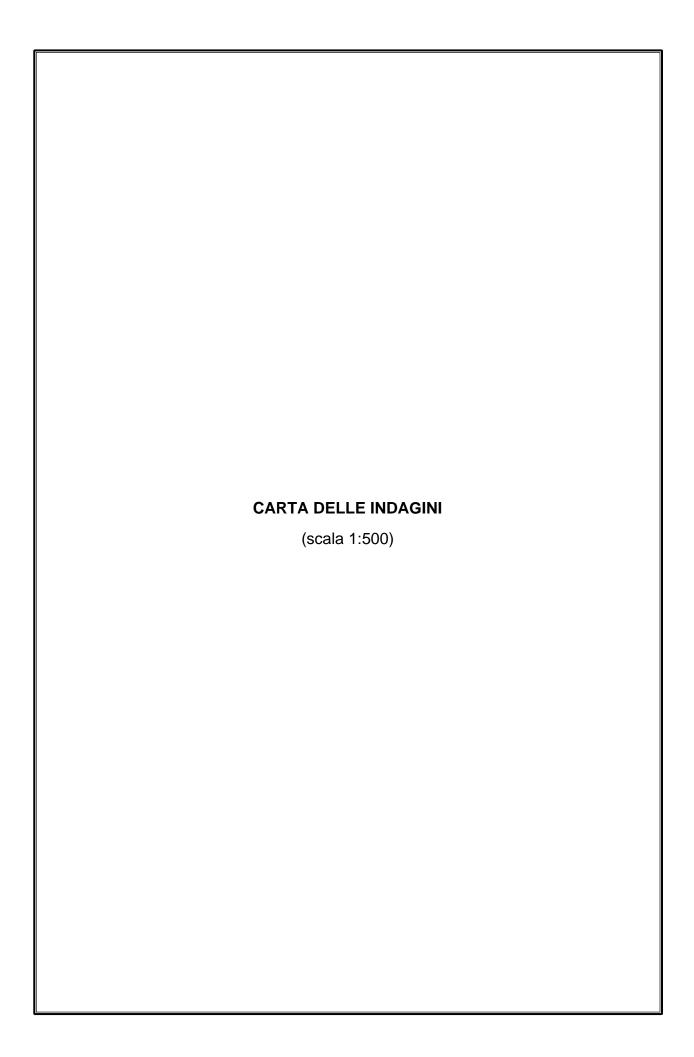

CARTA DELLA PERICOLOSITÀ
State di Attuazione (PAI) Piano etralcio di bacine per l'Assette Idrogeologice (scala 1:5 000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

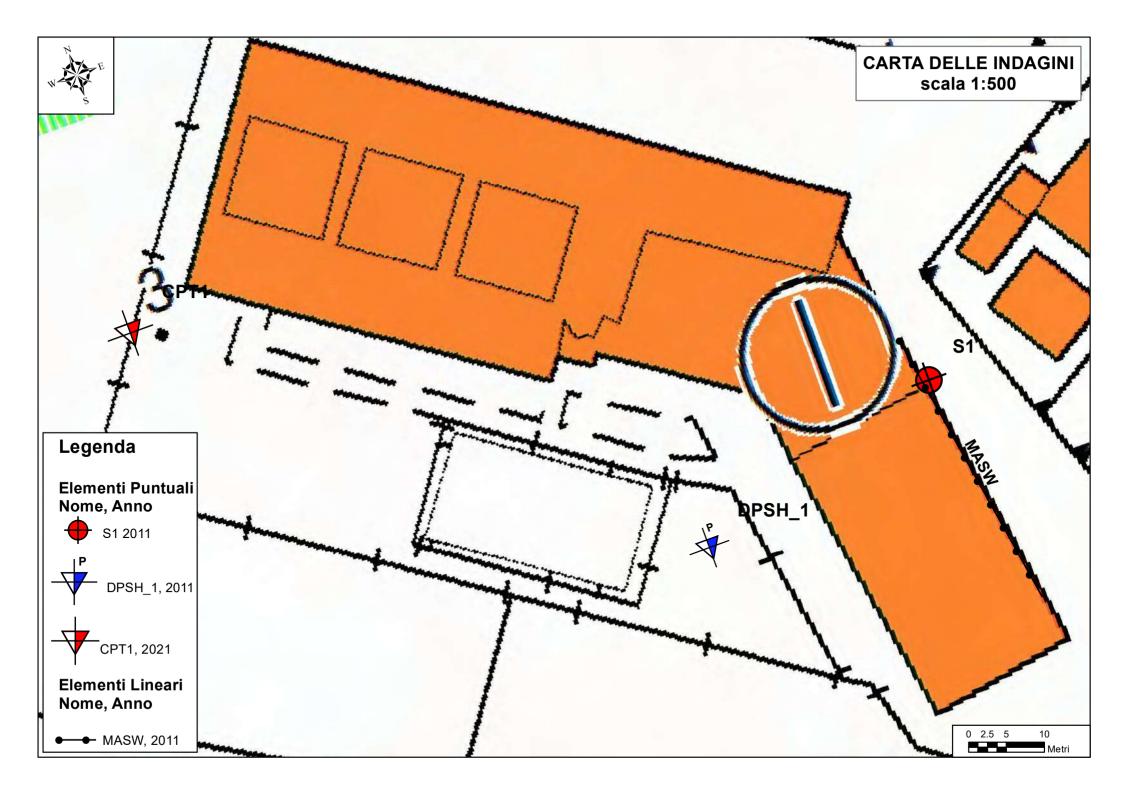

OARTA REL RIGOLUS
CARTA DEL RISCHIO
Stato di Attuazione (PAI) Piano stralcio di bacino per l'Assetto Idrogeologico (scala 1:5.000)

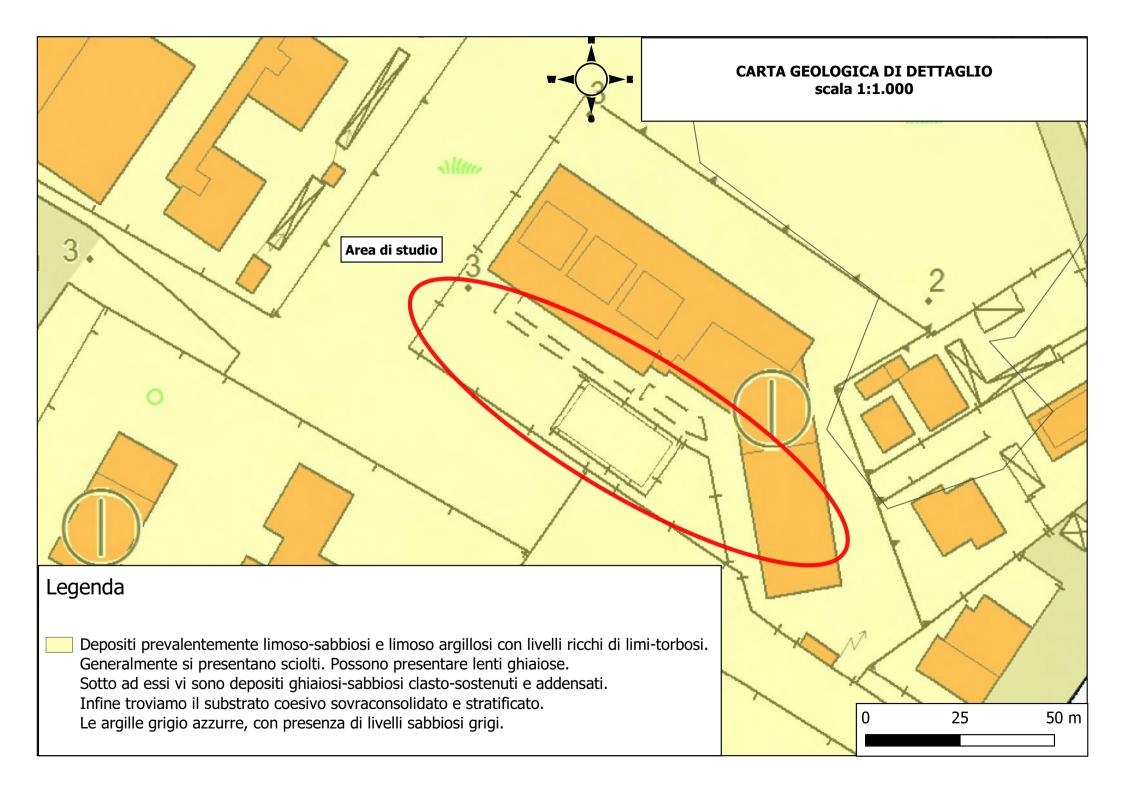

CARTA DELLA PERICOLOSITÀ DA ALLUVIONI Stato di Attuazione (PSDA) Piano stralcio di difesa dalle alluvioni (scala 1:Í .000)	

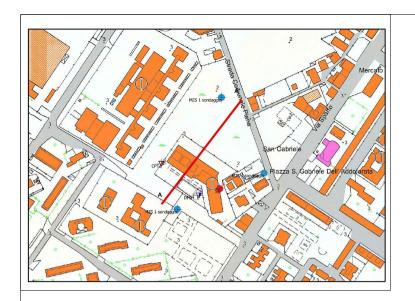



CARTA DELLE PENDENZE (scala 1:5.000)	







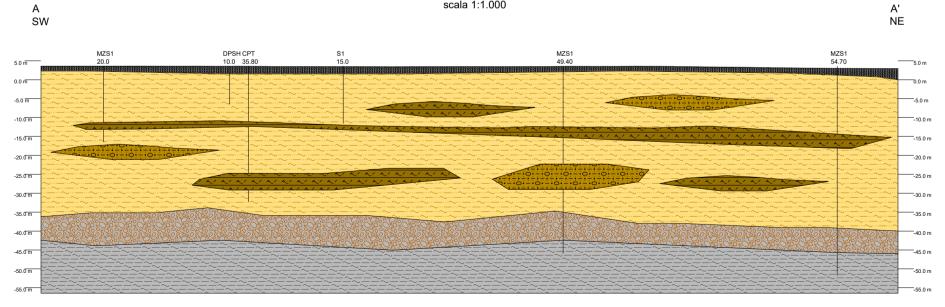


SEZIONE LITOSTRATIGRAFICA	
(scala 1:1.000)	

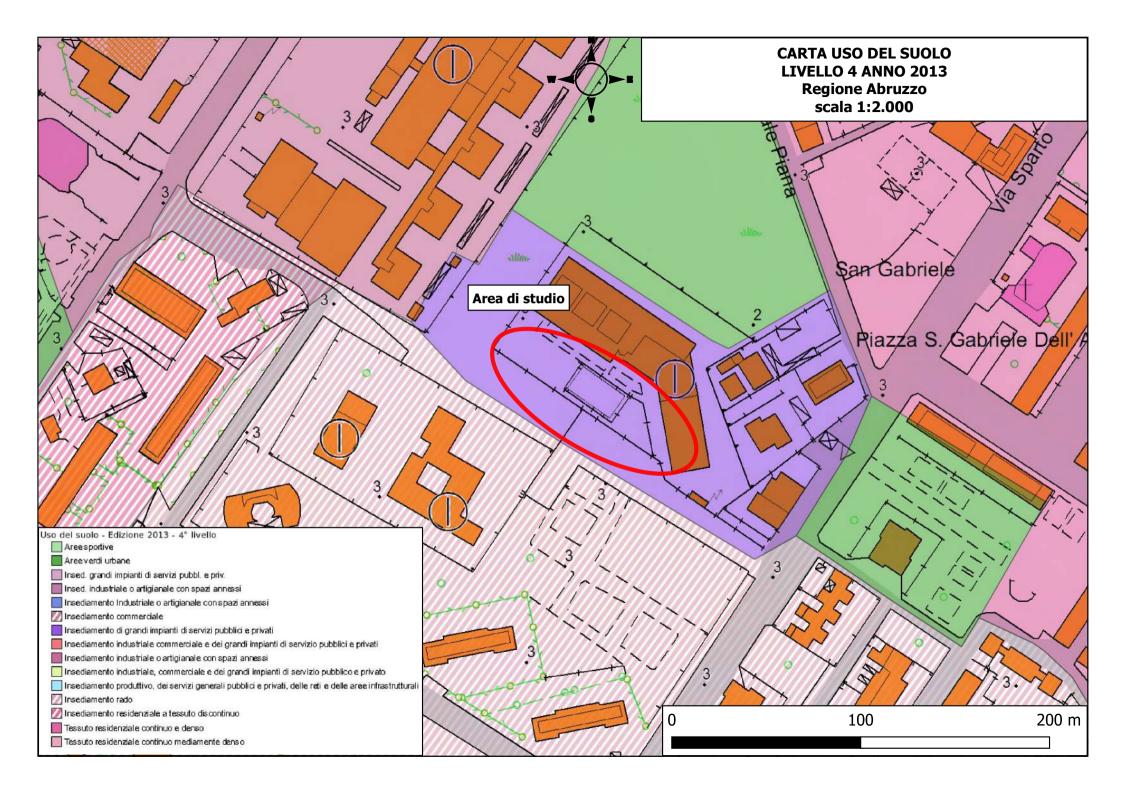
Legenda

Depositi antropici e terreno di riporto

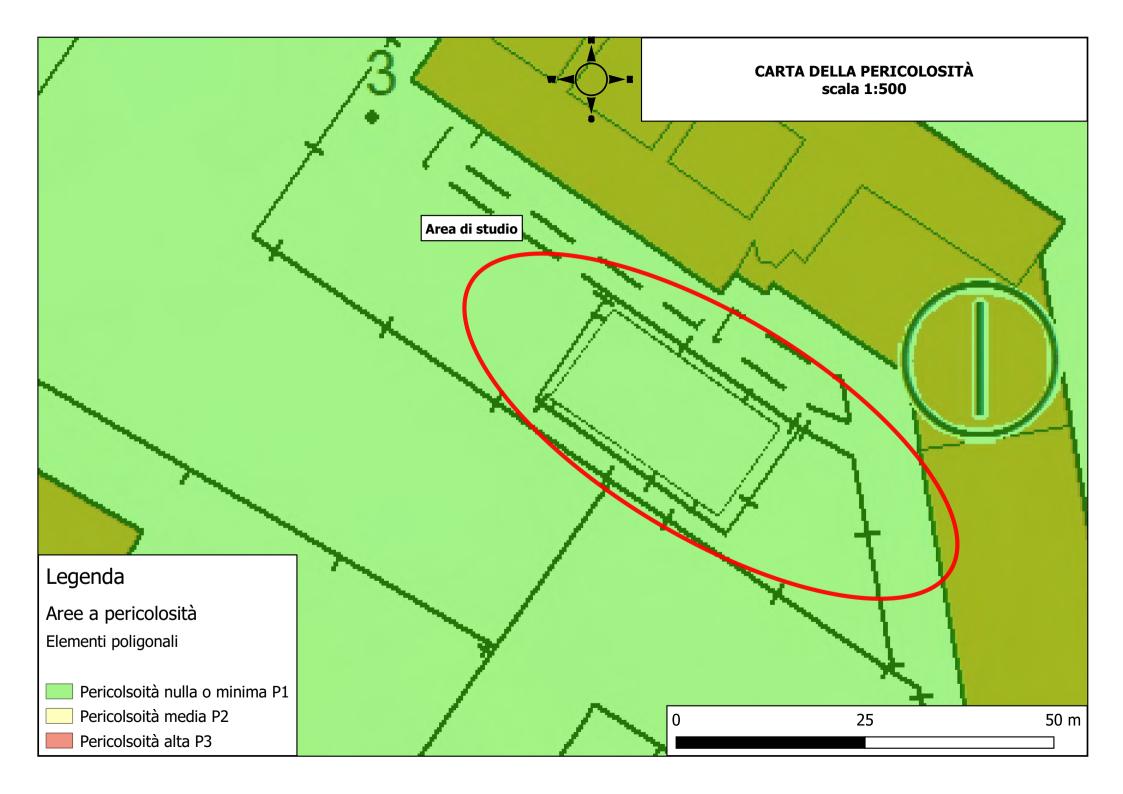
Limo argilloso e/o argilla limosa con livelli sabbiosi limosi e continui orizzonti torbosi

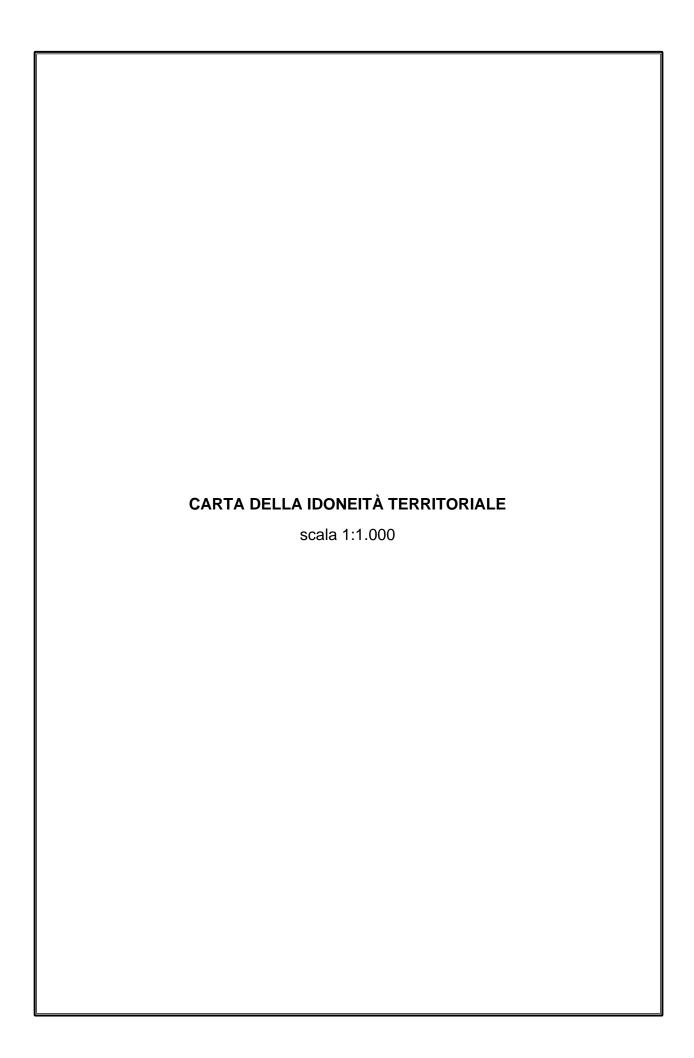


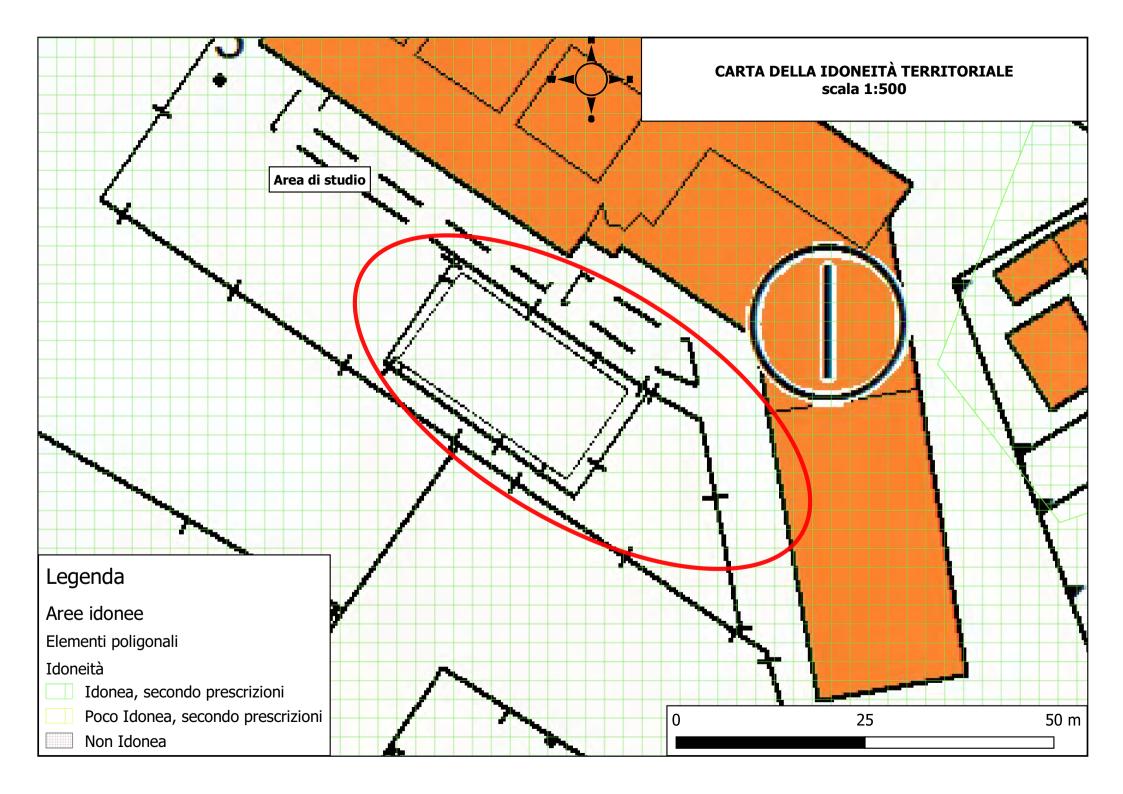
Depositi sabbiosicostituito da ghiaie e sabbie talvolta cementate con frazione coesiva

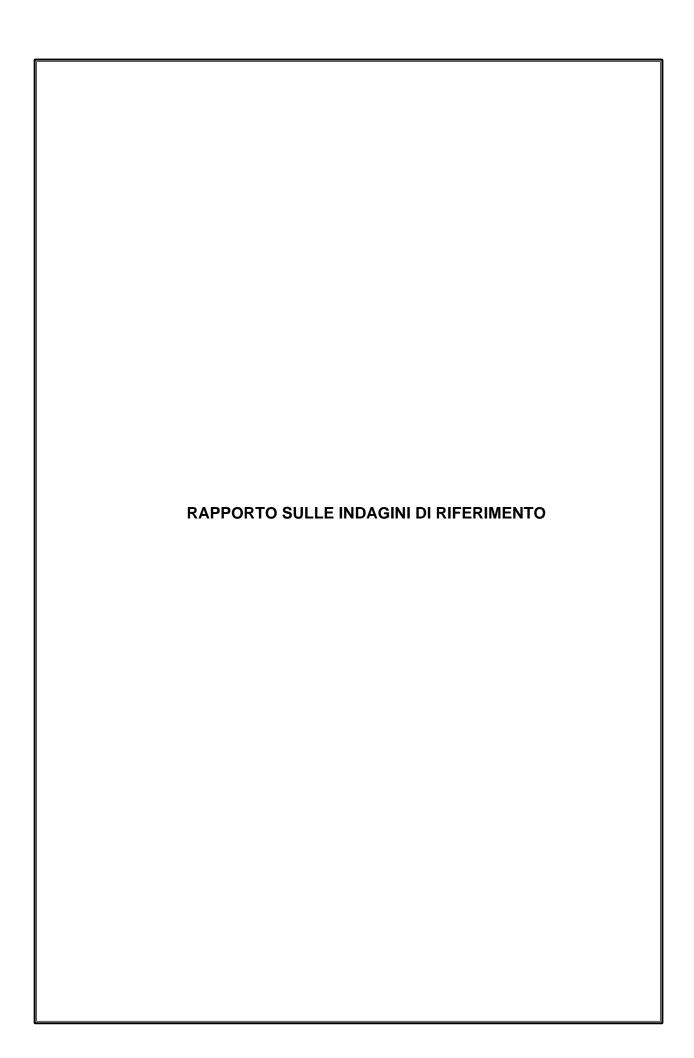


Depositi pelitici costituiti da argille sistose grigio azzurre con livelli sabbiosi






CARTA LICO DEL CUOLO	
CARTA USO DEL SUOLO	
Regione Abruzzo (scala 1:G000)	



Ministero delle Infrastrutture e dei Trasporti

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

PROVINCIA DI PESCARA

SETTORE VIII Edilizia scolastica, Genio Civile e Patrimonio

Accertamenti strutturali per quadro conoscitivo dell'Istituto Bellisario di Pescara

Certificati prove geotecniche in sito e di laboratorio Rapporto di prova Masw

Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 • REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 • www.geotecnicaricci.com • e-mail: info@geotecnicaricci.com

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

UBICAZIONE DELLE INDAGINI

Foglio 1 di 1

Commessa n°: 0014-11

del

07/03/2011

Committente: Amm.ne Prov.le Pescara

Cantiere: Istituto Bellisario - Pescara

- Sondaggio geognostico
- Prova penetrometrica dinamica continua DPSH

Stendimento prova Masw

Commessa n°

Ministero delle Infrastrutture e dei Trasporti

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

0014 del 07/03/2011

STRATIGRAFIA SONDAGGIO

Sondaggio <u>S1</u> Data Inizio <u>21/03/201</u> 1Data Fine <u>21/03/201</u>1

Certificato nº: 1693

del

05/04/2011

Foglio 1 di 1

Mod. CEST Rev. 01

Com	mittent	e <u>Amm</u>	.ne Prov.le Pescara Cantiere Istituto Bellisario				
Loca	lità	Pesca	Quota (m s.l.m.) 8 (WGS84) II C	Geolog	o Dott	. A. Ricci	
Maco	china o	peratrice	Nenzi Neva 3S Metodo perforazione rotazione Diam	. perfo	razione	mm_ 101	
Cam	pionam	nento <u>ca</u>	protaggio Diam. rivestimento mm 127		Carotier	e semplice	
Ubic	azione	sondagg	gio 42°26'47.80"N 14°12'39.18 \textitation mativa di riferimento Racc. AGI 1977 Pr	ocedu	ra di pro	ova PQ 01/S	
ita'	_	afia	one	Rivestimento	Ē	Pocket [kPa]	100
Profondita	Potenza	Stratigrafia	escrizione	estin	Campioni	;ket	Scala 1:100
Pro	Pot	Stra	D <mark>es</mark>	R Š	Car	100 200 300 400	Sca
	1.50		Asfalto, sottofondo e materiale di riporto costituito da clasti centimetrici in scarsa matrice limoso-sabbiosa. Recupero: materiale sciolto.			100 200 300 400	1
- 1.50 - - 2.10 -	09:0		Limo sabbioso e/o argilloso di colore avana con striature color		= 2.00 =		2
2.10			ruggine. Presenza di clasti diffusi eterometrici. Recupero: 100% carote		= 2.00 = 00612 = 2.50 =		3
		*****	Limo argilloso e/o argilla limosa di colore giallo verdastro con striature grigiastre e color ruggine. Da m 3.30 a m 3.7 livello li-	127.0			
	4.20		moso sabbioso con abbondante presenza di clasti centimetrici (diametro max 4 cm). Recupero: 100% carote.				4
	4		,		= 4.70 = 00613		5
					- 5.30 -	٦_	
- 6.30 -							6
			Limo argilloso e/o argilla limosa di colore grigiastro, molto plasti- co. Presenza di livelletti torbosi e frustoli vegetali in via di de-				7
			composizione. Recupero: 100% carote.				8
							9
							10
	8.70						11
	ω						
							12
							13
							14
15.00							15

Misura falda fine foro (21/03/2011): 2.8 m dal p.c.

Lo Sperimentatore (Dott. Geol. Angelo Ricci)

Il Direttore
(Dott. Geol. Renato Ricci)

Ministero delle Infrastrutture e dei Trasporti
Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito
Decreto 8502 del 22/12/2009

S1

 $m \cdot 0.00 - 5.00$

m 5.00 - 10.00

m 10.00 – 15.00

Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 • REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 ● www.geotecnicaricci.com ● e-mail: info@geotecnicaricci.com

del 22/12/2009

Iscrizione n. 19

Ministero delle Infrastrutture e dei Trasporti
Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito
Decreto 8502 del 22/12/2009

Postazione

Ministero delle Infrastrutture e dei Trasporti Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PRELIEVO CAMPIONI INDISTURBATI E A **DISTURBO LIMITATO**

Certificato n°: 1694 del 05/04/2011

Pag. 1 di 1

Commessa n°:		0014	del	07/03/	2011					
Committente:	А	mm. Pro	v.le di Pe	escara	Caı	ntiere:	Istituto Bellisar	io - Pescara		
		l				ccomandazioni A				
			Р	rocedura	a di prova l	Rif. MQ: PQ 02/5	3			
Sondaggio n	°:	S 1	-	Profor	ndità: 1	5,0 m	Falda: _	2,80* m dal p.c.		
Tipo sondaggio:	X	rotazione	е	percus	sione	Avanzame	ento: distruz	ione X carotaggio		
Ubicazione sondaggio: 42°26'47.30"N 14°12'37.67"E (WGS84)										
Sigla campione	Profe	ondità	Campio	onatore	Diametro	campionatore	Data prelievo	Classe del campione		
	da m	a m				mm				
00612	2,00	2,50	She	elby		86	21/03/2011	Q5		
00613	4,70	5,30	She	elby	86		21/03/2011	Q5		
Osservazioni: * misur	a eseguita	al termine	della tereb	razione de	el sondaggio	Incertezze di misura	a e/o anomalie riscontr	rate:		
S1 in data 21/03/201		. a	40.14.10.02		coaagg.c		a 5/5 a.15111a.15 11555111			
Lo Sperimen	itatore						II	Direttore		
(Dott. Geol. Ang	jelo Ricc	i)					(Dott. Ge	eol. Renato Ricci)		
								Mod. CEPC Rev 00		

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA PENETROMETRICA DINAMICA CONTINUA (DPSH)

Certificato n°: 1695 del 05/04/2011

Foglio 1 di 3

Commessa	n°:00)14-11 de	I 07/03/2011		
Committente:		Amm. Pro	v.le di Pescara	Cantiere:	Istituto Bellisario - Pescara
Prova n°:	DPSH 1	Quota:	8 m s.l.m. (WGS84)	_Data esecuzione pr	ova: 07/03/2011
Macchina Operatrice:		: 	Pen	etrometro Pagani TG	63-200 EML.C

Normativa di riferimento: (Raccomandazioni AGI 1977)

Procedura di prova Rif. MQ: PQ 06/S

Ubicazione prova: 42°26'47.30"N 14°12'37.67"E (WGS84)

Falda m dal p.c.: 2,80* Rivestimento m:
Caratteristiche penetrometro

Penetrometro dinamico Super pesante (DPSH)

Massa battente M = 63,50 kg

Altezza caduta libera H = 0,75 m

Diametro punta conica D = 51,00 mmArea base punta conica $A = 20,43 \text{ cm}^2$ Angolo apertura punta $\alpha = 60 \text{ °}$ Lunghezza delle aste $\Delta = 1,00 \text{ m}$

Ms =

0,63

kg

Massa aste per metro Ma = 6,31 kg Prof. Giunzione 1a asta P1 = 0,40 m

Avanzamento punta $\delta = 0.20$ m

Numero di colpi punta N = N(20) Relativo ad un avanzamento di 20 cm

Rivestimento/fanghi NO

Massa sistema battuta

Energia specifica x colpo Q = $(MH)/(A\delta)$ = 1,14 MPa (prova SPT: Qspt = 0,77 MPa)

Coefficiente teorico di energia $\beta t = Q/Qspt = 1,489$ (teoricamente: Nspt = $\beta t N$)

 $Rpd = M^2 H N / [A \delta (M + P)]$

Rpd = resistenza dinamica punta

P = Massa totale aste e sistema battuta

Osservazioni: * misura eseguita al termine della terebrazione del sondaggio S1 in data 21/03/2011.

Incertezze di misura e/o anomalie riscontrate:

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

II Direttore

(Dott. Geol. Renato Ricci)

Mod. CEPD Rev 02

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA PENETROMETRICA DINAMICA CONTINUA (DPSH)

Certificato n°: 1695 del 05/04/2011

Foglio 2 di 3

Committente: Amm. Prov.le di Pescara Cantiere: Istituto Bellisario - Pesca	ra
	ıa
Prova n°: DPSH 1 Quota: 8 m s.l.m. (WGS84) Data esecuzione prova: 07/03/2011	
Macchina Operatrice: Penetrometro Pagani TG 63-200 EML.C	

Normativa di riferimento: (Raccomandazioni AGI 1977)

Procedura di prova Rif. MQ: PQ 07/S

Prof.	Numero colpi	asta	Rpd	Prof.	Numero colpi	asta	Rpd	Prof.	Numero colpi	asta	Rpd
(m)	N = N (20)		(Mpa)	(m)	N = N (20)		(Mpa)	(m)	N = N (20)		(Mpa)
0,2	2	1	2,10	9,8	9	11	5,0	-	-	-	-
0,4	6	1	6,30	10,0	9	11	5,0	-	-	-	-
0,6	5	2	4,80	-	-	-	-	-	-	-	-
0,8	3	2	2,90	-	-	-	-	-	-	-	-
1,0	1	2	1,00	-	-	-	-	-	-	-	-
1,2	5	2	4,80	-	-	-	-	-	-	-	-
1,4	3	2	2,90	-	-	-	-	-	-	-	-
1,6	11	3	9,80	-	-	-	-	-	-	-	-
1,8	9	3	8,00	-	-	-	-	-	-	-	-
2,0	2	3	1,80	-	-	-	-	-	-	-	-
2,2	2	3	1,80	-	-	-	-	-	-	-	-
2,4	1	3	0,90	-	-	-	-	-	-	-	_
2,6	1	4	0,80	-	-	-	-	-	-	-	-
2,8	2	4	1,70	-	-	-	-	-	-	-	_
3,0	2	4	1,70	_	-	-	-	-	-	-	_
3,2	3	4	2,50	_	-	-	-	-	-	-	_
3,4	3	4	2,50	_	-	-	-	-	-	-	_
3,6	4	5	3,10	_	-	-	-	-	-	-	_
3,8	4	5	3,10	_	-	-	-	-	-	-	_
4,0	5	5	3,90	_	-	-	-	-	-	-	_
4,2	7	5	5,40	_	_	_	-	_	_	-	_
4,4	8	5	6,20	_	_	_	-	_	_	-	_
4,6	8	6	5,80	_	_	_	_	_	_	-	_
4,8	10	6	7,30	_	_	_	_	_	_	-	_
5,0	11	6	8,00	_	_	_	_	_	_	-	_
5,2	10	6	7,30	_	_	_	_	_	_	-	_
5,4	10	6	7,30	_	_	_	-	_	_	-	_
5,6	7	7	4,80	_	_	_	_	_	_	_	_
5,8	9	7	6,20	_	_	_	-	_	_	-	_
6,0	8	7	5,50	_	_	_	-	_	_	-	_
6,2	8	7	5,50	_	_	_	-	_	_	-	_
6,4	9	7	6,20	_	_	_	_	_	_	_	_
6,6	9	8	5,80	_	_	_	-	_	_	-	_
6,8	10	8	6,50	_	-	-	-	-	-	-	_
7,0	9	8	5,80	_	-	-	-	-	-	-	_
7,2	10	8	6,50	-	-	-	-	-	-	-	-
7,4	10	8	6,50	-	-	-	-	-	-	-	_
7,6	8	9	4,90	-	-	-	-	-	-	-	_
7,8	9	9	5,50	-	-	-	-	-	_	-	_
8,0	8	9	4,90	-	-	-	-	-	_	-	_
8,2	8	9	4,90	_	-	-	-	-	-	-	_
8,4	9	9	5,50	_	_	-	_	-	-	-	_
8,6	9	10	5,20	_	_	-	_	-	-	-	_
8,8	10	10	5,80	l -	_	-	_	-	_	_	_
9,0	9	10	5,20	-	_	-	_	_	_	-	_
9,2	10	10	5,80	_	_	-	_	_	_	_	_
9,4	9	10	5,20	-	_	-	-	_	_	-	_
9,6	9	11	5,00	-	-	-	-	-	-	-	-

Osservazioni:

Incertezze di misura e/o anomalie riscontrate:

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

II Direttore

(Dott. Geol. Renato Ricci)

Mod. CEPS Rev 02

Ministero delle Infrastrutture e dei Trasporti Autorizzazione a svolgere attività di prova e certificazione per prove

geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA PENETROMETRICA DINAMICA **CONTINUA (DPSH)**

Certificato nº: 1695 del 05/04/2011

Foglio 3 di 3

Commessa n°:	0014-11	del	07/03/201	1		
Committente:	Amm. Prov.le d	i Pescara		Cantiere:	Istituto Bel	lisario - Pescara
Prova n°:	DPSH 1 Quota:	8 m s.l.m	(WGS84)	Data esecuzione	prova:	07/03/2011
Macchina Operatri	ce:		Penetro	metro Pagani TG	63-200 EML.C	
	Normat			ccomandazioni A0	GI 1977)	
		Procedu	ra di prova	Rif. MQ: PQ 07/S		
N =	N(20) numero di colpi per	netrazione p	unta - avanz	amento δ = 20		Rpd (MPa)
0	20 40	60	80	100	0 10	20 30 40 50
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 3,0 3,2 4,0 4,0 4,2 4,4 4,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6					0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 4.4 4.6 4.8 5.0 5.2 5.4 5.6 6.6 6.8 6.7 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.3 8.4 8.6 8.8 8.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	
Osservazioni:				Incertezze di n	nisura e/o anomalie	e riscontrate:
Lo Speri	mentatore					II Direttore
-	Angelo Ricci)				(Dott	Geol. Renato Ricci)
(2011. 0001.					(2011.	Mod CEPS Pay 02

Ministero delle Infrastrutture e dei Trasporti
Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito
Decreto 8502 del 22/12/2009

DPSH 1

n.3750/18/00

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

APERTURA E DESCRIZIONE GENERALE **DEL CAMPIONE**

3030 Certificato n°: del 08/04/2011

		Foglio 1 di 1		
Verbale Accettazione n°:	00192 del 21/03/2011	Sigla campione:	(00612
Committente: An	nm.ne Prov.le Pescara	Cantiere:	Istituto Bellisa	rio - Pescara
Sondaggio n°: S1	Profondità m:2,0 - 2,5	Data prelievo:	21/	03/2011
Data inizio prova:	21/03/2011	Data fine prova:	21/	03/2011
Normativa di r	riferimento: ASTM D 2488,	Raccomandazioni AGI	1994, ASTM D) 4648
	Procedura di prov	a Rif. MQ: PQ 02/L		
Tipo contenitore: Fus	stella metallica Stato ca	mpione: Disturbato	/ Indisturbato	
Lunghezza (cm): 52	_ Diametro "Φ"(mm):8	Modalità di pre	elievo: camp	pionatore Shelby
Descrizione: Limo argilloso (ASTM D 2488-93)	e/o argilla limosa di colore	grigio verdastro con s	triature nerastre	Э.
CLASSE DEL CAMP (Racc. AGI 1994		' '	STUTTU (ASTM D 24	
Q1 Disturbati o rimane		≤ 40	Stratificata	
Q2 Disturbati o rimane		40 ÷ 80	Laminata	
Q3 Disturbati o rimane Q4 Disturbo limitato	eggiati Consistente Molto consisten	80 ÷ 150 te 150 ÷ 300	Fessurata Levigata	
Q5 Indisturbati	Duro	≥ 300	Scagliosa	
			Lenticolare	
			Omogenea	
UMIDITA'	PLASTICITA'	GRADO DI CEMENTAZIO		ONE CON HCI
(ASTM D2488-93) Secco	(ASTM D 2488-93) Non plastico	(ASTM D 2488-93) Debole	Nulla	1 D 2488-93)
Umido	Poco plastico	Moderato	Debole	
Saturo	Mediamente plastico	Elevato	Alta	
	Molto plastico			
(m) Po	Note Prove ese		enetrometer (Pa)	Vane Test (kPa) (ASTM D 4648-94)
	aneggiato			
EDO	Prova edom	ietrica		
TD2 TD3	Prova di Taglio		150	
	Prova di comp		175	
2,52	triassiale non co non drenat	onsolidata .	150	
Osservazioni:		Incertezze di misur	a e/o anomalie	riscontrate:
Lo Sperimentatore				Il Direttore
Dott. Geol. Angelo Ricci			Dott. G	Geol. Renato Ricci
	_			Mod. CEAC Rev 02

Ministero delle Infrastrutture e dei Trasporti Autorizzazione a svolgere attività di prova e certificazione per prove

geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA EDOMETRICA AD INCREMENTI DI **CARICO**

3033 Certificato n° del 08/04/11

Foglio 1 di 3

		imentato					II Direttore				
Osservazio	ııı: (") valc	ore assunto)				Incertezze di misura e/o anomalie riscontrate:				
		-		Casagrai	IUE		Incertage di migure e/o anomalia riccontrata				
Metodo c	ralcolo (· ·		Casagrai	nde		log $\sigma'_{\rm v}$				
20,0	0,07	0,000					0,500	Щ 10000			
25,0	6,87	0,595						#			
400,0 100,0	11,57 9,04	0,551 0,595					0,550	#			
400.0	11 57		SCARICO)			0,000	$ \exists $			
			2045:01]		0,600	#			
								#			
1600,0	14,17	0,505	17,2	8,04E-05	4,60E-10	0,234	0,650	\exists			
800,0	10,15	0,576	8,9	1,07E-04	1,18E-09	0,235	0,700	#			
400,0	6,11	0,646	6,4	1,29E-04	1,98E-09	0,171	0,700	#			
200,0	3,18	0,698	5,4	1,46E-04	2,65E-09	0,103	0,750	#			
100,0	1,41	0,729	5,6	2,15E-04	3,74E-09	0,050		#			
50,0	0,55	0,744	7,1	1,15E-03	1,58E-08	0,020	e 0,800	\exists			
25,0	0,20	0,750					3				
u			CARICO			,,,	Indice di rigonfiamento $C_s = -$	-			
kPa	ε _ν %	-	MPa	cm²/sec	m/sec	%	Indice di ricompressione $C_c = -$	<u>-</u>			
σ',	εν	е	М	C _v	k	Cα	Indice di ricompressione $C_r = -$	_			
Frazione a				=	-	%	Indice dei vuoti $e_f = 0,508$	-			
Frazione li				=	-	%		%			
Frazione g				=	-	%	Caratteristiche fisiche finali del provino				
Limite di p				W _P =	-	%	rensione di rigorniamento o s < 50,0 k	Pa			
Limite di li	quidità		-	W _L =	-	%	Tensione di rigonfiamento g' > 25,0 k	Pa			
Massa vol			(*)	ρ_s =		Mg/m ³		℃			
Grado di s		ne		$S_{ro} =$	98,6	%	Intervallo di carico 24 d	ore			
Indice dei		icca		ρ_d = e_0 =	1,54 0,753	Mg/m ³ -	Sezione $A_0 = 39,57$ c	m ²			
Massa vol Massa vol				ρ =		Mg/m ³	,	cm m ²			
Contenuto				W _o =	27,5	%	,	cm			
Caratteristiche fisiche iniziali del provino Dimensioni iniz. provino											
Anello:		fisso		Drenaggio:		do	Oppio Carta da filtro: SI	NO			
Apparecch	natura Ul							NO			
				ometro a fu			<u> </u>	7 N/C			
Posizione	ed orient	amento o	lel provi	no all'intern	o del cam	pione:	fustellamento secondo l'asse del campione.				
		- -									
Descrizion	•			•			ore grigio verdastro con striature nerastre.				
Classe ca	ampione	e: Q5	Stato	campione:	Disturb	ato	/ Indisturbato Campionamento: PQ 03/L				
				F	Procedur	a di pro	ova Rif. MQ: PQ 11/L				
				Normati	va di rife	rimento	o: UNI CEN ISO/TS 17892-5				
Data inizi	io prova	:		23/03/20	11		Data fine prova: 07/04/2011				
Sondagg	io n°:	S1	Profo	ndità m: _	2,0 -	2,5	Data prelievo: 21/03/2011				
Committe	ente:		Provi	ncia di Pe	scara		Cantiere: Istituto Bellisario - Pescara				
verbale F	Accellaz	ione n°:	00)192 d	el <u>21/0</u>	03/2011	Sigla campione: 00612				

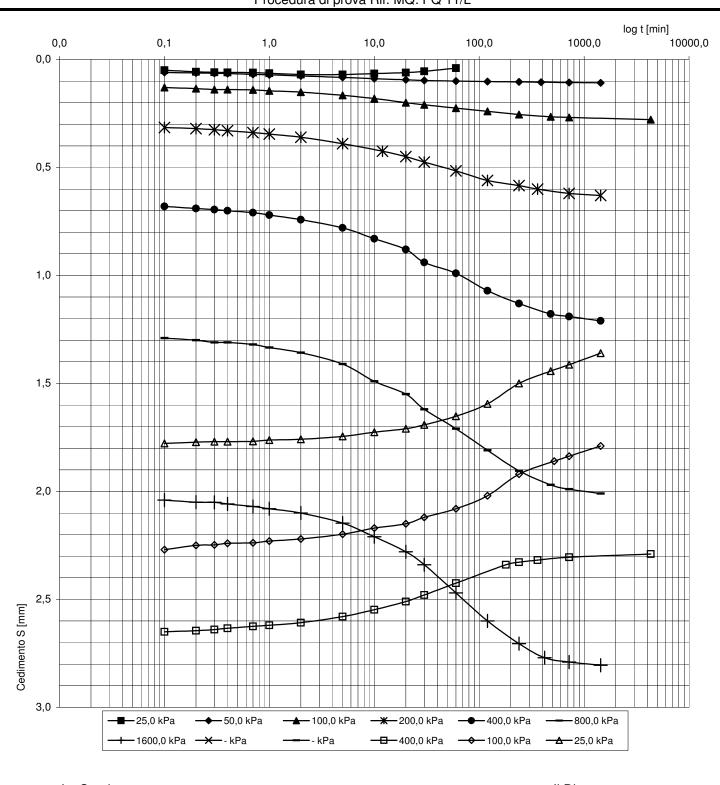
(Dott. Geol. Renato Ricci)

(Dott. Geol. Angelo Ricci)

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA EDOMETRICA AD INCREMENTI DI CARICO


Certificato n° 3033 del 08/04/11

Foglio 2 di 3

00192 Sigla campione: 00612 Verbale Accettazione n°: del 21/03/2011 Committente: Provincia di Pescara Cantiere: Istituto Bellisario - Pescara Profondità m: 2,0 - 2,5 21/03/2011 Sondaggio n°: Data prelievo: 23/03/2011 Data fine prova: Data inizio prova: 07/04/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-5

Procedura di prova Rif. MQ: PQ 11/L

Lo Sperimentatore (Dott. Geol. Angelo Ricci)

Il Direttore
(Dott. Geol. Renato Ricci)

Mod. CEED Rev 0

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA EDOMETRICA AD INCREMENTI DI CARICO

Certificato n° 3033 del 08/04/11

Foglio 3 di 3

kPa σ'_{v} = 100,0 kPa σ'_{v} = 200,0 kPa σ'_{v} = 400,0 kPa σ'_{v} = 800,0 kPa σ'_{v} = 1600,0 kPa

 Verbale Accettazione n°:
 00192
 del
 21/03/2011
 Sigla campione:
 00612

 Committente:
 Provincia di Pescara
 Cantiere:
 Istituto Bellisario - Pescara

 Sondaggio n°:
 S1
 Profondità m:
 2,0 - 2,5
 Data prelievo:
 21/03/2011

 Data inizio prova:
 23/03/2011
 Data fine prova:
 07/04/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-5

ΔH t ΔH t ΔH

Procedura di prova Rif. MQ: PQ 11/L

TABELLE VALORI CEDIMENTI TEMPO

min 0,10		-	Δι ι	-	Δι ι	4	Δι ι	-	Δι ι	·	Δι ι	ı.	Δ11
0.10	mm	min	mm	min	mm	min	mm	min	mm	min	mm	min	mm
0,.0	0,050	0,10	0,060	0,10	0,130	0,10	0,315	0,10	0,680	0,10	1,290	0,10	2,040
0,20	0,057	0,20	0,062	0,20	0,135	0,20	0,320	0,20	0,690	0,20	1,300	0,20	2,050
0,30	0,059	0,30	0,064	0,30	0,139	0,30	0,325	0,30	0,695	0,30	1,310	0,30	2,051
0,40	0,060	0,40	0,065	0,40	0,139	0,40	0,330	0,40	0,700	0,40	1,310	0,40	2,058
0,70	0,061	0,70	0,069	0,70	0,141	0,70	0,339	0,70	0,709	0,70	1,320	0,70	2,070
1,00	0,064	1,00	0,071	1,00	0,145	1,00	0,345	1,00	0,720	1,00	1,334	1,00	2,080
2,00	0,070	2,00	0,076	2,00	0,151	2,00	0,360	2,00	0,742	2,00	1,358	2,00	2,100
5,00	0,070	5,00	0,083	5,00	0,166	5,00	0,390	5,00	0,780	5,00	1,410	5,00	2,147
10,00	0,065	10,00	0,089	10,00	0,181	12,00	0,425	10,00	0,830	10,00	1,490	10,00	2,210
20,00	0,061	20,00	0,094	20,00	0,200	20,00	0,450	20,00	0,880	20,00	1,550	20,00	2,280
30,00	0,055	30,00	0,097	30,00	0,210	30,00	0,475	30,00	0,940	30,00	1,620	30,00	2,340
60,00	0,040	60,00	0,100	60,00	0,225	60,00	0,516	60,00	0,990	60,00	1,710	60,00	2,470
-	-	120,00	0,102	120,00	0,240	120,00	0,560	120,00	1,071	120,00	1,810	120,00	2,600
-	_	240,00	0,104	240,00	0,255	240,00	0,584	240,00	1,130	240,00	1,905	240,00	2,705
-	_	390,00	0,105	480,00	0,265	360,00	0,600	480,00	1,178	480,00	1,970	420,00	2,770
-	-	720,00	0,107	720,00	0,268	720,00	0,620	720,00	1,190	720,00	1,990	720,00	2,790
-	-	1440,00	0,107	4320,00	0,279	1440,00	0,630	1440,00	1,210	1440,00	2,010	1440,00	2,805
_	_	-	-	-	-		-		-,-10	-	_,510	-	_,555
-		-		-		_		-		-	-	-	-
_	_	_		_		_		_		_		_	
_	_	_	_	_		_		_		_	_	_	_
-	_	_	_	_	_	-	_	_		-	_	-	_
								004	2100				
								SCA	RICO				
$\sigma'_{v} = -$	kPa	$\sigma'_{v} = -$	· kPa	$\sigma'_{v} = 400$	0,0 kPa	$\sigma'_{v} = 100$	0,0 kPa	$\sigma'_{v} = 25$,0 kPa	$\sigma'_{v} = -$	· kPa	$\sigma'_{v} = -$	· kPa
t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ
min	mm	min	mm	min	mm	min	mm	min	mm	min	mm	min	mm
-	-	-	-	0,10	2,650	0,10	2,270	0,10	1,778	-	-	-	-
-	-	-	-	0,20	2,645	0,20	2,250	0,20	1,772	-	-	-	-
-	-	-	-	0,30	2,640	0,30	2,248	0,30	1,770	-	-	-	-
-	-	_	_	0,40	2,634	0,40	2,240	0,40	1,770	_			
											-	-	-
-	-	-	-		2.625					-	-	-	-
-	-	-	-	0,70	2,625 2,620	0,70	2,238	0,70	1,768	-	-		-
	- -			0,70 1,00	2,620	0,70 1,00	2,238 2,230	0,70 1,00	1,768 1,762		- - -	- - -	- - -
- - -	- - -	- - -	-	0,70 1,00 2,00	2,620 2,608	0,70 1,00 2,00	2,238 2,230 2,220	0,70 1,00 2,00	1,768 1,762 1,759	- - -	-	- - - -	- - -
- - - -	- - - -	- - - -	-	0,70 1,00 2,00 5,00	2,620 2,608 2,580	0,70 1,00 2,00 5,00	2,238 2,230 2,220 2,198	0,70 1,00 2,00 5,00	1,768 1,762 1,759 1,745	- - - -	-	- - - -	- - - -
- - - -	-	- - -	-	0,70 1,00 2,00 5,00 10,00	2,620 2,608 2,580 2,548	0,70 1,00 2,00 5,00 10,00	2,238 2,230 2,220 2,198 2,170	0,70 1,00 2,00 5,00 10,00	1,768 1,762 1,759 1,745 1,726	- - -	-	- - -	- - - - -
- - - - -	- - -	- - -	- - -	0,70 1,00 2,00 5,00 10,00 20,00	2,620 2,608 2,580 2,548 2,510	0,70 1,00 2,00 5,00 10,00 20,00	2,238 2,230 2,220 2,198 2,170 2,150	0,70 1,00 2,00 5,00 10,00 20,00	1,768 1,762 1,759 1,745 1,726 1,710	- - -	- - -	- - -	- - - - - - - -
- - - - -	- - -	- - -	- - -	0,70 1,00 2,00 5,00 10,00 20,00 30,00	2,620 2,608 2,580 2,548 2,510 2,480	0,70 1,00 2,00 5,00 10,00 20,00 30,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120	0,70 1,00 2,00 5,00 10,00 20,00 30,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692	- - -	- - -	- - -	- - - - - - -
	- - -	- - -	- - -	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652	- - -	- - -	- - -	
-	- - -	- - -	- - -	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595	- - -	- - -	- - -	
- - - -				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500				
- - - - -				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 360,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443				
- - - -				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 360,00 720,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413				-
				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 360,00 720,00 4320,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305 2,290	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00 1440,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837 1,790	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00 1440,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413 1,360				-
				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 360,00 720,00 4320,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305 2,290	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00 1440,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837 1,790	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00 1440,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413 1,360				- - -
				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 720,00 4320,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305 2,290	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00 1440,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837 1,790	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00 1440,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413 1,360				- - -
				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 360,00 720,00 4320,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305 2,290	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00 1440,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837 1,790	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00 1440,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413 1,360				- - -
				0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 180,00 240,00 720,00 4320,00	2,620 2,608 2,580 2,548 2,510 2,480 2,425 2,340 2,328 2,318 2,305 2,290	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 520,00 720,00 1440,00	2,238 2,230 2,220 2,198 2,170 2,150 2,120 2,080 2,020 1,920 1,860 1,837 1,790	0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00 1440,00	1,768 1,762 1,759 1,745 1,726 1,710 1,692 1,652 1,595 1,500 1,443 1,413 1,360				- - -

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CEED Rev 04

Sondaggio n°: S1

Ministero delle Infrastrutture e dei Trasporti

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI TAGLIO DIRETTO

Certificato nº: 3031 del 08/04/2011

21/03/2011

Foglio 1 di 2

Verbale Accettazione n°: 00192 del 21/03/2011 Sigla campione: 00612

Committente: ___ Cantiere: Istituto Bellisario- Pescara Amm.ne Prov.le Pescara Profondità m: 2,0 - 2,5 Data prelievo:

Data fine prova: ___ Data inizio prova: 21/03/2011 29/03/2011

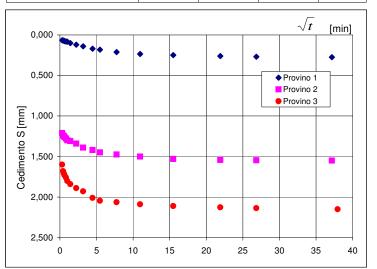
Normativa di riferimento: UNI CEN ISO/TS 17892-10

Procedura di prova Rif. MQ: PQ 11/L

Q5 PQ 03/L Stato campione: Disturbate / Indisturbato / Ricompattate | Campionamento: Classe campione:

Limo argilloso e/o argilla limosa di colore grigio verdastro con striature nerastre. Descrizione campione:

Posizione ed orientamento dei provini all'interno del campione: fustellamento secondo l'asse del campione


Apparecchiatura utilizzata: macchina di taglio diretto cod. int. 020055

Scatola di taglio: quadrata Condizione: sommersa

CARATTERISTICHE FISICHE INIZIALI		Dravina 1	Drawina 0	Provino 3	
CARATTERISTICHE FISICHE INIZIALI		Provino 1	Provimo 2	Provino 3	
Contenuto d'acqua	\mathbf{w}_{o}	24,07	32,83	31,15	%
Massa volumica	ρ	1,88	1,96	1,81	Mg/m ³
Massa volumica secca	$ ho_{\sf d}$	1,51	1,47	1,38	Mg/m ³
Indice dei vuoti iniziale	e _o	0,785	0,833	0,953	-
Grado di saturazione	S _{ro}	82,78	100,00	88,31	%
Massa volumica dei granuli	ρ_{s}	2,7	' (*valore assur	nto)	Mg/m ³

Prov	ino 1	Prov	ino 2	Prov	ino 3
Tensione	normale	Tensione	normale		normale
	cace		cace		cace
100,0	kPa	150,0	kPa	200,0	kPa
\sqrt{t}	ΔΗ	\sqrt{t}	ΔΗ	\sqrt{t}	ΔΗ
min	mm	min	mm	min	mm
0,32	0,065	0,32	1,210	0,32	1,600
0,45	0,070	0,45	1,240	0,45	1,680
0,55	0,072	0,55	1,250	0,55	1,710
0,63	0,078	0,63	1,260	0,63	1,730
0,84	0,080	0,84	1,278	0,84	1,760
1,00	0,082	1,00	1,299	1,00	1,800
1,41	0,100	1,41	1,310	1,41	1,840
2,24	0,120	2,24	1,340	2,24	1,890
3,16	0,141	3,16	1,390	3,16	1,930
4,47	0,170	4,47	1,419	4,47	2,010
5,48	0,181	5,48	1,450	5,48	2,045
7,75	0,211	7,75	1,475	7,75	2,064
10,95	0,235	10,95	1,500	10,95	2,090
15,49	0,248	15,49	1,530	15,49	2,110
21,91	0,261	21,91	1,542	21,91	2,127
26,83	0,268	26,83	1,546	26,83	2,136
37,15	0,275	37,15	1,550	37,95	2,150
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

Dimensioni provini										
		Provino 1	Provino 2	Provino 3						
Lato	L	6,00	6,00	6,00	cm					
Altezza	H ₀	1,97	1,97	1,96	cm					
Sezione	Α	36,00	36,00	36,00	cm ²					

	Provino 1	Provino 2	Provino 3	
Tempo di fine consolidazione primaria t ₁₀₀	82,81	49	39,69	min
Velocità di deformazione calcolata	0,003	0,004	0,006	mm/min
Indice dei vuoti a fine consolidazione	0,760	0,688	0,738	-

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CETD Rev 03

B

Data inizio prova:

Ministero delle Infrastrutture e dei Irasporti

Autorizzazione a svolgere attività di prova e certeficazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

21/03/2011

PROVA DI TAGLIO DIRETTO

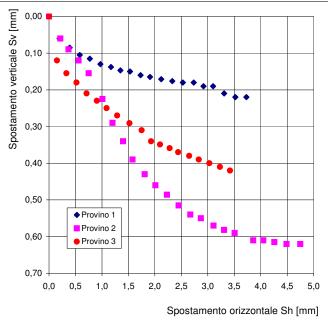
Certificato n°: 3031 del 08/04/2011 Foglio 2 di 2

29/03/2011

Verbale Accettazione n°:00192del21/03/2011Sigla campione:00612Committente:Amm.ne Prov.le PescaraCantiere:Istituto Bellisario- PescaraSondaggio n°:S1Profondità m:2,0 - 2,5Data prelievo:21/03/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-10

Data fine prova:


Procedura di prova Rif. MQ: PQ 11/L

FASE DI TAGLIO

Provino 1Provino 2Provino 3Velocità di deformazione applicata0,00300,00400,0060mm/min

VOIC	velocità di delorniazione applicata													
Р	rovino	1	Р	rovino	2	Р	rovino	3						
Tens	ione no	rmale	Tens	ione noi	male	Tens	ione nor	male						
	efficace	:		efficace			efficace							
100		kPa	150		kPa	200	,	kPa						
Sh	Sv	τ	Sh	Sv	τ	Sh	Sv	τ						
mm	mm	kPa	mm	mm	kPa	mm	mm	kPa						
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000						
0,200	0,060	7,121	0,215	0,060	6,171	0,150	0,120	6,213						
0,390	0,085	13,292	0,370	0,090	9,969	0,330	0,155	15,771						
0,580	0,105	18,514	0,560	0,120	13,292	0,520	0,180	23,895						
0,770	0,115	23,261	0,750	0,155	14,716	0,710	0,210	30,108						
0,970	0,130	27,534	1,010	0,225	15,666	0,905	0,230	34,887						
1,170	0,138	29,908	1,200	0,290	16,141	1,090	0,250	38,500						
1,350	0,147	31,332	1,400	0,340	17,565	1,290	0,270	41,100						
1,530	0,150	31,806	1,580	0,390	19,938	1,520	0,291	44,200						
1,730	0,160	32,281	1,810	0,430	22,787	1,750	0,310	45,879						
1,910	0,165	32,281	2,010	0,460	25,635	1,930	0,340	48,747						
2,120	0,171	32,281	2,230	0,486	28,900	2,100	0,349	49,400						
2,330	0,176	32,756	2,450	0,515	31,700	2,280	0,359	50,400						
2,530	0,180	32,756	2,670	0,540	33,300	2,440	0,370	51,136						
2,735	0,180	32,756	2,870	0,550	35,300	2,650	0,380	51,136						
2,920	0,190	32,756	3,110	0,570	37,028	2,830	0,390	51,136						
3,100	0,190	32,756	3,310	0,582	38,100	3,030	0,400	51,136						
3,310	0,210	32,756	3,510	0,590	38,453	3,230	0,410	50,658						
3,520	0,220	32,756	3,860	0,610	38,927	3,420	0,420	50,658						
3,730	0,220	32,281	4,050	0,610	38,927	-	-	-						
-	-	-	4,260	0,615	38,453	-	-	-						
-	-	-	4,490	0,620	38,453	-	-	-						
-	-	-	4,750	0,620	37,978	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-	-						
-	-	-	•	-	-		-	-						
-	-	-	-	-	-	-	-	-						

Contenuto d'acqua fina	ale			
Provino		1	2	3
Contenuto d'acqua finale	%	23,74	31,10	30,54

Osservazioni: Incertezze di misura e/o anomalie riscontrate:

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CETD Rev 03

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA (UU)

Certificato n°: 3032 del 08/04/2011

Foglio 1 di 2

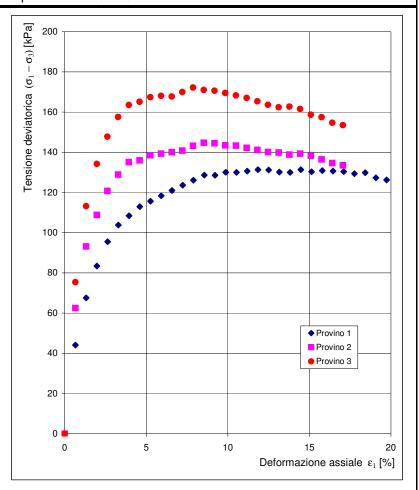
Verbale Accettazione n°:		00	192	del	21/03/201	1_Sigla	campion	e:	00612				
Committente:	Amı	m.ne	Prov.le	Pescai	ra	Cantie	Cantiere:			ellisa	ario - Pescara		
Sondaggio n°: S1	P	rofo	ndità m:	2	,0 - 2,5	Data _I	Data prelievo: 21/03/2011						
Data inizio prova:	Data inizio prova: 29/03/2011									04	/04/2011		
					erimento:								
			-	rocedi	ıra di prov	a Rif. MC	Q: PQ 13.	/L					
Classe campione: Q5	e: Di	/ Indis	turbato	Campion	amen	to:	PQ 03	3/L					
Descrizione campione: Limo argilloso e/o argilla limosa di colore grigio verdastro con striature nerastre.													
Posizione ed orientament	o de	el pro	vino all'i	nterno	del campio	one: fuste	ellamento	secondo	l'asse	e ver	ticale del camp	oione.	
				Cara	atteristiche	fisiche i	niziali						
Provino			1	2	3								
Contenuto d'acqua	Wo	=	26,0	26,5	26,6	%	Limite di	liquidità	W _L	=	-	%	
Massa volumica naturale	ρ	=	1,97	2,00	1,99	Mg/m ³	Limite di	plasticità	W_P	=	-	%	
Massa volumica secca	ρ_{d}	=	1,56	1,58	1,57	Mg/m ³						-	
Indice dei vuoti	e _o	=	0,731	0,706	0,718	-	Frazione	sabbiosa		=	-	%	
Grado di saturazione	S _{ro}	=	96,0	100,0	100,0	%	Frazione	limosa		=	-	%	
Massa volumica dei granuli	$ ho_{ extsf{s}}$	=	2,7 (valore a	ssunto)	Mg/m ³	Frazione	argillosa		=	-	%	
Dim	ensi	oni i	niziali pr	ovini									
Provino			1	2	3		Tempe	eratura di pi	rova		19	℃	
Altezza		H_0	7,60	7,62	7,62	cm							
Sezione		A_0	11,34	11,34	11,34	cm ²	Appar	ecchiatura:		Pres	ssa motorizzata	da 50 kN	
Volume		V ₀	86,18	86,41	86,41	cm ³							
Velocità di deformazione			0,76	0,76	0,76	mm/min		essione pist a superiore:			con snodo sfe	rico	
Pressione di contenimento			100	200	300	kPa							
Osservazioni:						Incertezz	re di misu	ra e/o anon	nalie r	iscor	ntrate:		
Lo Sperimentato	re									II D	Pirettore		
(Dott. Geol. Angelo I	Ricci	i)						(1	Dott.		I. Renato Ricci)	-	
											Mod. CEUU Rev. 05	del 17/03/08	

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA (UU)

Certificato n°: 3032 del 08/04/2011


Foglio 2 di 2

Verbale Accetta	zione nº:	00192 c	del 2	1/03/2011	Sigla campione:	00612
Committente: _		Amm.ne Prov.l	e Pesca	ara	Cantiere:	Istituto Bellisario - Pescara
Sondaggio n°:_	S1	Profondità r	m:	2,0 - 2,5	Data prelievo:	21/03/2011
Data inizio prov	a:	29/03	3/2011		Data fine prova:	04/04/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-8

Procedura di prova Rif. MQ: PQ 13/L

_	Ducyting 4 Ducyting 0 Ducyting 0											
	ino 1		ino 2		ino 3							
	ione di		ione di		ione di							
conten	imento kPa	conten 200	imento	conten 300	imento							
	_		kPa		kPa							
ε ₁	σ ₁ - σ ₃ kPa	ε ₁ %	σ ₁ - σ ₃ kPa	ε ₁	σ ₁ - σ ₃ kPa							
0,00	0,0	0,00	0,0	0,00	0,0							
0,66	44,1	0,66	62,5	0,66	75,4							
1,32	67,6	1,31	93,2	1,31	113,2							
1,97	83,5	1,97	108,9	1,97	134,3							
2,63	95,5	2,62	120,7	2,62	147,8							
3,29	103,8	3,28	128,9	3,28	157,5							
3,95	108,4	3,94	135,1	3,94	163,6							
4,61	113,0	4,59	136,0	4,59	165,1							
5,26	115,7	5,25	138,5	5,25	167,5							
5,92	118,4	5,23	139,3	5,23	168,1							
6,58	121,0	6,56	140,1	6,56	167,7							
7,24	123,6	7,22	140,1	7,22	170,0							
7,24	126,1	7,87	143.2	7,22	170,0							
8,55	128,6	8.53	144,7	8,53	171,0							
9.21	128,5	9.19	144,7	9,19	171,0							
9,87	130,1	9,84	143,5	9,84	169,5							
10,53	130,0	10.50	143,3	10,50	168,3							
11,18	130,7	11,15	142,2	11,15	167,1							
11,84	131,3	11,81	141,2	11,81	165,3							
12,50	131,2	12,47	140,1	12,47	163,6							
13,16	130,2	13,12	139.9	13,12	162,4							
13,82	130,0	13,78	138,8	13,78	162,8							
14,47	131,4	14,44	139,4	14,44	161,5							
15,13	130,4	15,09	138,3	15,09	158,7							
15,79	130,9	15,75	136,4	15,75	157,5							
16,45	130,7	16,40	134,6	16,40	154,7							
17,11	130,4	17,06	133,5	17,06	153,5							
17,76	129,4	-	-	-	-							
18,42	129,8	-	-	-	-							
19,08	127,3	-	-	-	-							
19,74	126,3	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							
-	-	-	-	-	-							

Schemi di rottura									
Provino 1	Provino 2	Provino 3							

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CEUU Rev 05 del 17/03/08

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

APERTURA E DESCRIZIONE GENERALE **DEL CAMPIONE**

3034 Certificato n°: del 08/04/2011

			Foglio	1 di 1		
Verbale Accettazione	e n°: <u>00192</u> d	el 21/03/2011	Sigla	campione:		00613
Committente:	Amm.ne Pro	v.le Pescara	Cantie	ere:	Istituto Bellis	sario - Pescara
Sondaggio n°: S	1 Profondità	m: 4,7 - 5,3	Data p	orelievo:	2	1/03/2011
Data inizio prova:	21/0	03/2011	Data f	ine prova:	2	1/03/2011
Normat	iva di riferimento	: ASTM D 2488, I	Raccomand	dazioni AGI	1994, ASTM	I D 4648
		Procedura di prov	/a Rif. MQ:	PQ 02/L		
Tipo contenitore:	Fustella meta	Illica Stato ca	mpione: {	Disturbato	/ Indisturbat	0
Lunghezza (cm):	55 Diame	etro "Φ"(mm): <u>8</u>	86 Mo	dalità di pre	elievo: car	mpionatore Shelby
	-	si di colore giallo ro con punteggiat			e ocra e limi a	rgillosi e/o argille
CLASSE DEL (Racc. Al Q1 Disturbati o	GI 1994)	CONSISTENZ (ASTM D 2488-	93) (H	Rp (Pa) 40	STUT (ASTM D Stratificata	
Q2 Disturbati o	rimaneggiati	Tenero	40	÷ 80	Laminata	
Q3 Disturbati o		Consistente		÷ 150	Fessurata	
Q4 Disturbo lim		Molto consisten Duro		÷ 300	Levigata Scagliosa	
		- 55			Lenticolare	
					Omogenea	
UMIDITA' (ASTM D2488-		LASTICITA'		CEMENTAZIO		ZIONE CON HCI TM D 2488-93)
Secco		plastico	M D 2488-93) (ASTM D 2488-93) Debole			1101 D 2400-93)
Umido		plastico	Modera	to	Debo	ole
Saturo		amente plastico	Elevato			
		plastico				
Profondità (m)	Note	Prove ese	guite		enetrometer (Pa)	Vane Test (kPa) (ASTM D 4648-94)
4,70	Limo argilloso giallo verdastro					
4,84	con rari clasti					
FDO	Limo argilloso grigiastro	Prova edom	netrica	_	125	
5,04 _{TD1}		1 Tova cuom	ιστισα		125	
TD2	Limo argilloso giallo verdastro	Prova di Taglio	diretto CD	_	100	
5,15		Prova di comp			100	
5,25	Limo argilloso grigiastro	triassiale non co non drenat		-	125	
Osservazioni:			Incertez	ze di misur	a e/o anomal	ie riscontrate:
Lo Sperimentato	ore					II Direttore
Dott. Geol. Angelo	Ricci				Dott.	Geol. Renato Ricci
						Mod. CEAC Rev 02

Ministero delle Infrastrutture e dei Trasporti Autorizzazione a svolgere attività di prova e certificazione per prove

geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA EDOMETRICA AD INCREMENTI DI **CARICO**

3037 Certificato n° del 08/04/11

Foglio 1 di 3

Verbale .	Accettaz	ione n°:	00)192 d	el 21/	03/2011	Sigla campione: 00613
Committ	ente:		Prov	incia di Pe	scara		Cantiere: Istituto Bellisario - Pescara
Sondagg	gio n°:	S1	Profo	ndità m: _	4,7	- 5,3	Data prelievo: 21/03/2011
Data iniz	io prova	:		23/03/20			Data fine prova: 07/04/2011
				Normati	va di rif	erimento	o: UNI CEN ISO/TS 17892-5
				F	Procedu	ra di pro	ova Rif. MQ: PQ 11/L
Classe c	ampione	e: Q5	Stato	campione:	Distur	bato /	/ Indisturbato Campionamento: PQ 03/L
Descrizion	ne campi			a di limi arg giastro con			llo verdastro con striature ocra e limi argillosi e/o argille limose di rastra.
Posizione	ed orient	tamento c	del provi	no all'intern	o del ca	mpione:	fustellamento secondo l'asse del campione.
Apparecc	hiatura ut	ilizzata:	Ed	lometro a fu	Ilcro fisso	cod. int.	. 010006 Lubrificazione anello: SI NO
Anello:		fisso		Drenaggio:		do	oppio Carta da filtro: SI NO
C	aratteris	stiche fis	siche i	niziali del	provin		Dimensioni iniz. provino
Contenuto				W _o =	31,8		Diametro $D = 7,11$ cm
Massa vo				ρ =	1,88	J.	Altezza $H_0 = 1,98$ cm
Massa vo		ecca		ρ_d =	1,42		Sezione $A_0 = 40,00 \text{ cm}^2$
Indice dei					0,895	-	
Grado di s				S _{ro} =	96,1		Intervallo di carico 24 ore Temperatura di prova $T = 18$ °C
Massa vo Limite di I		er granuli		$\rho_s = W_1 =$	2,70	Mg/m ³ %	
Limite di p	•			$W_P =$	_	%	Tensione di rigonfiamento $\sigma'_s > - kPa $
Frazione				=	-	%	\ IN U
Frazione				=	-	%	Caratteristiche fisiche finali del provino
Frazione I				=	-		Contenuto d'acqua $W_f = 24.8$ %
Frazione a	argillosa			=	-		Indice dei vuoti
σ'ν	$\mathbf{\epsilon}_{v}$	е	М	C _v	k		Indice di ricompressione $C_r = -$
kPa	%	-	MPa	cm ² /sec	m/sec		Indice di compressione $C_c = -$
			CARICC)			Indice di rigonfiamento $C_s = -$
25,0	0,81	0,880	3,0	1,11E-03	3,60E-0		0.000
50,0	1,69	0,863	2,7	1,01E-04	3,60E-0	9 0,056	e 0,900
100,0	3,64	0,826	2,5	1,61E-04	6,43E-0	9 0,122	0,850
200,0	6,52	0,771	3,2	1,34E-04	4,07E-0	9 0,181	0.000
400,0	10,20	0,702	4,9	1,46E-04	2,94E-0	9 0,232	0,800
800,0	14,38	0,622	8,2	1,40E-04	1,67E-0	9 0,263	0,750
1600,0	18,69	0,541	15,2	2,30E-04	1,48E-0	9 0,271	0.700
							0,700
							0,650
			SCARIC)	1		
400,0	17,17	0,570					0,600
100,0	14,75	0,615					0,550
25,0	12,63	0,656		*			
,	•	-					0,500
Metodo (calcolo C	C _v :		Casagra	nde		log σ'_{v} [kPa]
Osservazio	oni:						Incertezze di misura e/o anomalie riscontrate:
L							
	Lo Sper	imentato	re				Il Direttore

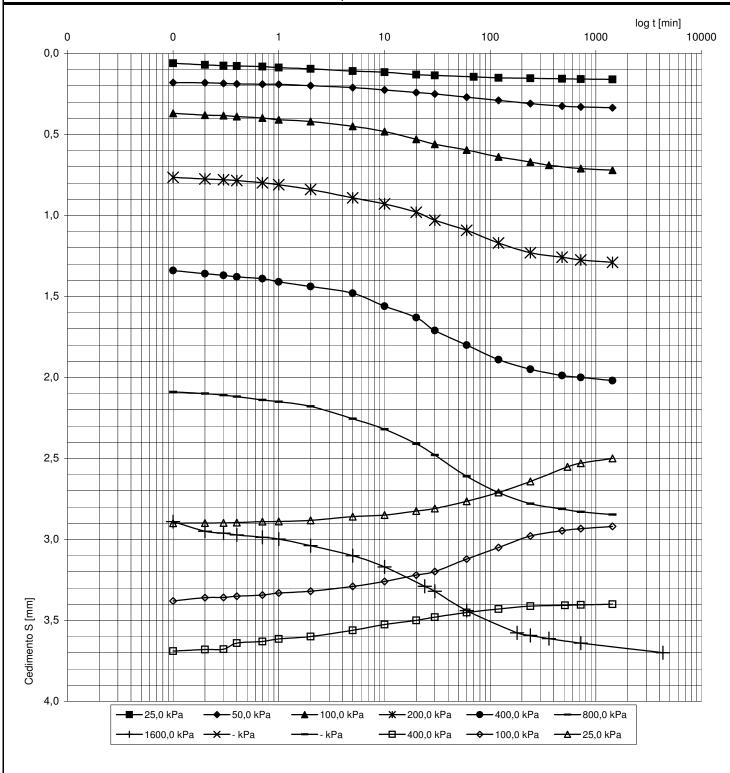
(Dott. Geol. Renato Ricci)

(Dott. Geol. Angelo Ricci)

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA EDOMETRICA AD INCREMENTI DI CARICO


Certificato n° 3037 del 08/04/11

Foglio 2 di 3

00192 Sigla campione: 00613 Verbale Accettazione n°: del 21/03/2011 Committente: Provincia di Pescara Cantiere: Istituto Bellisario - Pescara Profondità m: 4,7 - 5,3 21/03/2011 Sondaggio n°: Data prelievo: 23/03/2011 Data fine prova: Data inizio prova: 07/04/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-5

Procedura di prova Rif. MQ: PQ 11/L

Lo Sperimentatore (Dott. Geol. Angelo Ricci)

Il Direttore
(Dott. Geol. Renato Ricci)

Mod. CEED Rev 0

Data inizio prova:

25,0

Ministero delle Infrastrutture e dei Trasporti

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

 $kPa \sigma'_{v} =$

50,0

23/03/2011

100,0

PROVA EDOMETRICA AD INCREMENTI DI CARICO

Certificato n° 3037 del 08/04/11

07/04/2011

 $kPa \sigma'_{v} = 1600,0$

800,0

Foglio 3 di 3

Data fine prova:

 $kPa \sigma'_{v} =$

400,0

 $kPa \sigma'_{v} =$

Verbale Accettazione n°:		00192	del	21/03/2011	Sigla campione:	00613
Committente:		Provincia di F	Pesca	ra	Cantiere:	Istituto Bellisario - Pescara
Sondaggio n°: S	1	Profondità m:		4,7 - 5,3	Data prelievo:	21/03/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-5

Procedura di prova Rif. MQ: PQ 11/L

TABELLE VALORI CEDIMENTI TEMPO

200,0

 $kPa \sigma'_{v} =$

t	ΔH	t	ΔΗ	t	ΔH	t	ΔΗ	t	ΔΗ	t	ΔH	t	ΔΗ
min	mm	min	mm	min	mm	min	mm	min	mm	min	mm	min	mm
0,10	0,060	0,10	0,180	0,10	0,370	0,10	0,765	0,10	1,340	0,10	2,090	0,10	2,890
0,20	0,070	0,20	0,181	0,20	0,380	0,20	0,775	0,20	1,360	0,20	2,100	0,20	2,950
0,30	0,075	0,30	0,185	0,30	0,383	0,30	0,780	0,30	1,370	0,30	2,110	0,30	2,961
0,40	0,077	0,40	0,188	0,40	0,389	0,40	0,785	0,40	1,379	0,40	2,119	0,40	2,972
0,70	0,081	0,70	0,190	0,70	0,398	0,70	0,798	0,70	1,390	0,70	2,139	0,70	2,987
1,00	0,087	1,00	0,191	1,00	0,409	1,00	0,810	1,00	1,410	1,00	2,150	1,00	2,998
2,00	0,095	2,00	0,199	2,00	0,420	2,00	0,840	2,00	1,439	2,00	2,179	2,00	3,039
5,00	0,109	5,00	0,210	5,00	0,450	5,00	0,891	5,00	1,480	5,00	2,255	5,00	3,101
10,00	0,116	10,00	0,225	10,00	0,482	10,00	0,929	10,00	1,560	10,00	2,320	10,00	3,170
20,00	0,130	20,00	0,241	20,00	0,530	20,00	0,980	20,00	1,630	20,00	2,410	24,00	3,290
30,00	0,135	30,00	0,250	30,00	0,560	30,00	1,030	30,00	1,710	30,00	2,479	30,00	3,320
70,00	0,144	60,00	0,270	60,00	0,596	60,00	1,092	60,00	1,800	60,00	2,611	60,00	3,440
120,00	0,150	120,00	0,290	120,00	0,638	120,00	1,170	120,00	1,890	120,00	2,710	180,00	3,577
240,00	0,153	240,00	0,310	240,00	0,670	240,00	1,230	240,00	1,950	240,00	2,780	240,00	3,593
480,00	0,156	480,00	0,325	360,00	0,690	480,00	1,258	480,00	1,988	480,00	2,812	360,00	3,613
720,00	0,158	720,00	0,330	720,00	0,710	720,00	1,275	720,00	2,000	720,00	2,830	720,00	3,640
1440,00	0,160	1440,00	0,335	1440,00	0,720	1440,00	1,290	1440,00	2,020	1440,00	2,847	4320,00	3,700
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
								SCA	RICO				
σ' _v = -	- kPa	σ' _v = -	· kPa	-' 40	0.0 kDa	-! 10	0.0 L/D=				l.D.		
O = -	- кга												
								$\sigma'_{v} = 25$		σ' _v = -		- v	· kPa
t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ	t	ΔΗ
		t min	ΔH mm	t min	ΔH mm	t min	ΔH mm	t min	ΔH mm	t min	ΔH mm	t min	
t min -	ΔΗ	t min -	ΔH mm -	t min 0,10	ΔH mm 3,690	t min 0,10	ΔH mm 3,380	t min 0,10	ΔH mm 2,900	t min -	ΔH mm -	t	ΔΗ
t min - -	ΔH mm - -	t min - -	ΔH mm - -	t min 0,10 0,20	ΔH mm 3,690 3,680	t min 0,10 0,20	ΔH mm 3,380 3,360	t min 0,10 0,20	ΔH mm 2,900 2,899	t min - -	ΔH mm - -	t min	ΔH mm - -
t min - -	ΔΗ	t min -	ΔH mm -	t min 0,10 0,20 0,30	ΔH mm 3,690 3,680 3,678	t min 0,10 0,20 0,30	ΔH mm 3,380 3,360 3,359	t min 0,10 0,20 0,30	ΔH mm 2,900 2,899 2,898	t min -	ΔH mm -	t min	ΔΗ
t min - - -	ΔH mm - - -	t min - - -	ΔH mm - - - -	t min 0,10 0,20 0,30 0,40	ΔH mm 3,690 3,680 3,678 3,640	t min 0,10 0,20 0,30 0,40	ΔH mm 3,380 3,360 3,359 3,351	t min 0,10 0,20 0,30 0,40	ΔH mm 2,900 2,899 2,898 2,896	t min - - -	ΔH mm - - -	t min - - -	ΔH mm - - - -
t min - - - -	ΔH mm - - - - -	t min - - - -	ΔH mm - - - -	t min 0,10 0,20 0,30 0,40 0,70	ΔH mm 3,690 3,680 3,678 3,640 3,630	t min 0,10 0,20 0,30 0,40 0,70	ΔH mm 3,380 3,360 3,359 3,351 3,344	t min 0,10 0,20 0,30 0,40 0,70	ΔH mm 2,900 2,899 2,898 2,896 2,890	t min - - - -	ΔH mm - - - - -	t min - - - -	ΔH mm - -
t min - - - - -	ΔH mm	t min - - - - -	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615	t min 0,10 0,20 0,30 0,40 0,70 1,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331	t min 0,10 0,20 0,30 0,40 0,70 1,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889	t min - - - - -	ΔH mm	t min - - - - -	ΔH mm - - - - -
t min - - - -	ΔH mm - - - - -	t min - - - -	ΔH mm - - - -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882	t min - - - -	ΔH mm - - - - -	t min - - - -	ΔH mm - - - -
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860	t min	ΔH mm	t min	ΔH mm - - - - -
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825	t min	ΔH mm	t min	ΔH mm - - - - -
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220 3,199	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,889 2,882 2,860 2,850 2,825 2,809	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220 3,199 3,122	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,809 2,765	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,809 2,765 2,710	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,809 2,765 2,710 2,642	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 510,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 540,00 540,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,809 2,765 2,710 2,642 2,552	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 510,00 720,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00 720,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 540,00 720,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,809 2,765 2,710 2,642 2,552 2,530	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 510,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 240,00 480,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 240,00 240,00 720,00 1440,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,825 2,765 2,710 2,642 2,552 2,530 2,500	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 240,00 510,00 720,00 1440,00 -	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 480,00 720,00 1440,00 -	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934 2,920	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 240,00 540,00 720,00 1440,00 -	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,765 2,710 2,642 2,552 2,530 2,500	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 220,00 510,00 720,00 1440,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 480,00 720,00 1440,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934 2,920 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 30,00 60,00 120,00 540,00 720,00 1440,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,765 2,710 2,642 2,552 2,530 2,500 -	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 220,00 30,00 60,00 120,00 720,00 1440,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 240,00 480,00 720,00 1440,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934 2,920 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 240,00 540,00 720,00 1440,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,765 2,710 2,642 2,552 2,530 2,500 -	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 2240,00 510,00 720,00 1440,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 20,00 480,00 720,00 1440,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,320 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934 2,920 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 240,00 540,00 720,00 1440,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,765 2,710 2,642 2,552 2,530 2,500	t min	ΔH mm	t min	ΔH mm
t min	ΔH mm	t min	ΔH mm	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 220,00 30,00 60,00 120,00 720,00 1440,00	ΔH mm 3,690 3,680 3,678 3,640 3,630 3,615 3,600 3,561 3,526 3,500 3,480 3,452 3,430 3,412 3,407 3,404 3,400 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 240,00 480,00 720,00 1440,00	ΔH mm 3,380 3,360 3,359 3,351 3,344 3,331 3,220 3,291 3,260 3,220 3,199 3,122 3,050 2,979 2,947 2,934 2,920 -	t min 0,10 0,20 0,30 0,40 0,70 1,00 2,00 5,00 10,00 240,00 540,00 720,00 1440,00	ΔH mm 2,900 2,899 2,898 2,896 2,890 2,889 2,882 2,860 2,850 2,765 2,710 2,642 2,552 2,530 2,500 -	t min	ΔH mm	t min	ΔH mm

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CEED Rev 04

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI TAGLIO DIRETTO

Certificato n°: 3035 del 08/04/2011

Foglio 1 di 2

Verbale Accettazione n°: 00192 del 21/03/2011 Sigla campione: 00613

Committente: Amm.ne Prov.le Pescara Cantiere: Istituto Bellisario- Pescara

Sondaggio n°: S1 Profondità m: 4,7 - 5,3 Data prelievo: 21/03/2011

Data inizio prova: 21/03/2011 Data fine prova: 29/03/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-10

Procedura di prova Rif. MQ: PQ 11/L

Classe campione: Q5 Stato campione: Disturbate / Indisturbato / Ricompattate Campionamento: PQ 03/L

Descrizione campione: Alternanza di limi argillosi di colore giallo verdastro con striature ocra e limi argillosi e/o argille limose di colore grigiastro con punteggiatura nerastra.

colore grigiastro con particiggiatara norastra.

Posizione ed orientamento dei provini all'interno del campione: fustellamento secondo l'asse del campione

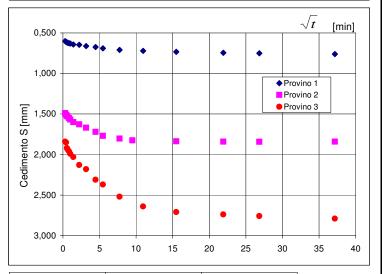
Apparecchiatura utilizzata: macchina di taglio diretto cod. int. 020007

Scatola di taglio: quadrata Condizione: sommersa

CARATTERISTICHE FISICHE INIZIALI		Provino 1	Provimo 2	Provino 3	
Contenuto d'acqua	Wo	33,54	34,10	34,92	%
Massa volumica	ρ	1,90	2,00	1,89	Mg/m ³
Massa volumica secca	ρ_{d}	1,42	1,49	1,40	Mg/m ³
Indice dei vuoti iniziale	e _o	0,900	0,808	0,928	-
Grado di saturazione	S_{ro}	100,00	100,00	100,00	%
Massa volumica dei granuli	ρ_{s}	2,7	(*valore assur	nto)	Mg/m ³

iviassa voidiffica dei graffdii						
Prov	ino 1	Prov	ino 2	Provino 3		
Tensione	normale	Tensione	normale	Tensione	normale	
effic	cace	effic	cace	effic	cace	
100,0	kPa	150,0	kPa	200,0	kPa	
\sqrt{t}	ΔΗ	\sqrt{t}	ΔΗ	\sqrt{t}	ΔΗ	
min	mm	min	mm	min	mm	
0,32	0,600	0,32	1,490	0,32	1,840	
0,45	0,610	0,45	1,510	0,45	1,850	
0,55	0,616	0,55	1,520	0,55	1,920	
0,63	0,620	0,63	1,530	0,63	1,935	
0,84	0,627	0,84	1,550	0,84	1,960	
1,00	0,630	1,00	1,569	1,00	1,990	
1,41	0,642	1,41	1,600	1,41	2,030	
2,24	0,647	2,24	1,627	2,24	2,129	
3,16	0,661	3,16	1,670	3,16	2,180	
4,47	0,674	4,47	1,720	4,47	2,310	
5,48	0,690	5,48	1,770	5,48	2,370	
7,75	0,710	7,75	1,804	7,75	2,520	
10,95	0,721	9,49	1,825	10,95	2,640	
15,49	0,732	15,49	1,836	15,49	2,710	
21,91	0,745	21,91	1,840	21,91	2,740	
26,83	0.750	26.83	1.842	26.83	2.760	

37,15


0,760

37,15

1,840

37,15

Dimensioni provini								
		Provino 1	Provino 2	Provino 3				
Lato	L	5,98	5,98	5,98	cm			
Altezza	H ₀	1,96 1,96 1,96		1,96	cm			
Sezione	Α	35,76	35,76	35,76	cm ²			

	Provino 1	Provino 2	Provino 3	
Tempo di fine consolidazione primaria t ₁₀₀	82,81	56,25	89,49	min
Velocità di deformazione calcolata	0,002	0,004	0,003	mm/min
Indice dei vuoti a fine consolidazione	0,827	0,638	0,654	-

2,790

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CETD Rev 03

B

Data inizio prova:

Ministero delle Infrastrutture e dei Irasporti

Autorizzazione a svolgere attività di prova e certeficazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

21/03/2011

PROVA DI TAGLIO DIRETTO

Certificato n°: 3035 del 08/04/2011
Foglio 2 di 2

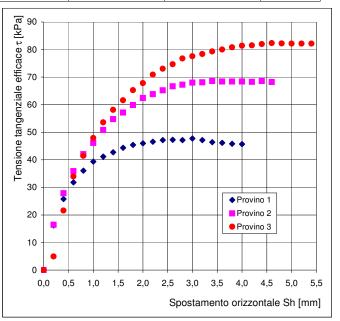
29/03/2011

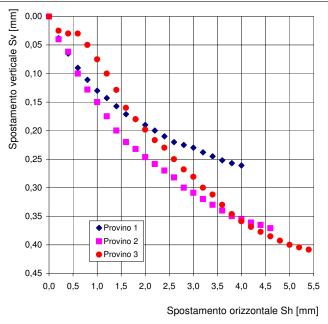
 Verbale Accettazione n°:
 00192
 del
 21/03/2011
 Sigla campione:
 00613

 Committente:
 Amm.ne Prov.le Pescara
 Cantiere:
 Istituto Bellisario- Pescara

 Sondaggio n°:
 S1
 Profondità m:
 4,7 - 5,3
 Data prelievo:
 21/03/2011

Data fine prova:


Normativa di riferimento: UNI CEN ISO/TS 17892-10


Procedura di prova Rif. MQ: PQ 11/L

FASE DI TAGLIO

Provino 1Provino 2Provino 3Velocità di deformazione applicata0,00200,00400,0030mm/min

V	velocità di deformazione applicata								
	Pı	ovino	1	Provino 2 Provino					3
Т	Tensione normale			Tensione normale			Tensione normale		
		efficace			efficace			efficace	
1	00	,0	kPa	150		kPa	200	,0	kPa
S	h	Sv	τ	Sh	Sv	τ	Sh	Sv	τ
mı	m	mm	kPa	mm	mm	kPa	mm	mm	kPa
0,0	00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,2	00	0,038	16,220	0,200	0,040	16,410	0,200	0,025	4,930
0,4	00	0,065	25,760	0,400	0,062	27,880	0,400	0,030	21,620
0,6	00	0,090	31,840	0,600	0,100	35,880	0,600	0,030	33,960
0,8	00	0,111	36,080	0,800	0,128	42,050	0,800	0,050	41,480
1,0		0,130	39,350	1,000	0,150	46,086	1,000	0,075	47,930
1,2	00	0,143	41,180	1,200	0,175	50,810	1,200	0,100	53,610
1,4	00	0,157	42,720	1,400	0,200	54,750	1,400	0,129	58,130
1,6	00	0,171	44,360	1,600	0,220	57,160	1,600	0,160	61,590
1,8	00	0,180	45,420	1,800	0,232	59,850	1,800	0,180	65,250
2,0	00	0,190	45,990	2,000	0,246	62,440	2,000	0,198	67,840
2,2	00	0,200	46,570	2,200	0,258	63,790	2,200	0,217	70,920
2,4	00	0,210	47,150	2,400	0,270	65,230	2,400	0,230	73,030
2,6	00	0,220	47,250	2,600	0,282	66,670	2,600	0,250	74,670
2,8	00	0,225	47,150	2,800	0,300	67,250	2,800	0,268	76,780
3,0	00	0,230	47,730	3,000	0,309	68,020	3,000	0,281	77,550
3,2	00	0,238	47,150	3,200	0,320	68,120	3,200	0,300	78,410
3,4	00	0,245	46,380	3,400	0,330	68,600	3,400	0,312	79,300
3,6	00	0,252	46,190	3,600	0,340	68,400	3,600	0,330	80,000
3,8	00	0,257	45,800	3,800	0,350	68,400	3,800	0,346	80,800
4,0	00	0,261	45,710	4,000	0,355	68,400	4,000	0,359	81,400
-		-	-	4,200	0,361	68,310	4,200	0,369	81,500
-		-	-	4,400	0,365	68,600	4,400	0,377	82,000
-		-	-	4,600	0,371	68,210	4,600	0,385	82,330
-		-	-	-	-	-	4,800	0,393	82,210
-		-	-	-	-	-	5,000	0,400	82,160
-		-	-	-	-	-	5,200	0,405	82,180
-		-	-	-	-	-	5,400	0,409	82,170
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-		-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-

Contenuto d'acqua finale							
Provino		1	2	3			
Contenuto d'acqua finale	%	33,31	30,41	30,90			

Osservazioni: Incertezze di misura e/o anomalie riscontrate:

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

Il Direttore

(Dott. Geol. Renato Ricci)

Mod. CETD Rev 03

Ministero delle Infrastrutture e dei Trasfrorti Autorizzazione a svolgere attività di prova e certificazione per prove

geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI COMPRESSIONE TRIASSIALE NON **CONSOLIDATA NON DRENATA (UU)**

del

Certificato nº: 3036 08/04/2011

Foglio 1 di 2

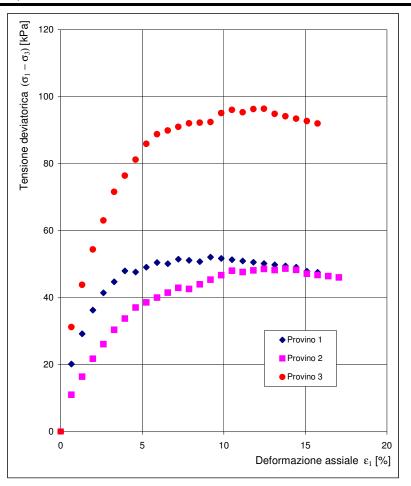
Verbale Accettazione n°:	00	192	del21	/03/2011	Sigla	campione:		00613	
Committente:	Committente: Amm.ne Prov.le Pescara			Cantiere: Istituto Bellisario - Pescara					
Sondaggio n°: S1	S1 Profondità m: 4,7 - 5,3			Data prelievo:21/03/2011					
Data inizio prova:		04/04/2	011		Data	fine prova:	0	5/04/2011	
		Normativ	va di rifei	rimento:	UNI CEN	N ISO/TS 17892-8			
		F	Procedura	a di prova	a Rif. MC	Q: PQ 13/L			
Classe campione: Q5	Stato o	ampione	: Dist	urbato	/ Indis	sturbato Campior	amento:	PQ 0	3/L
Descrizione campione: Alt limose di colore grigiastro					iallo verd	dastro con striature	e ocra e li	mi argillosi e/o	argille
Posizione ed orientamento	del pro	ovino all'ii	nterno de	el campic	ne: fuste	ellamento secondo	l'asse ve	erticale del cam	oione.
			Carat	teristiche	fisiche i	niziali			
Provino		1	2	3	insione i	THE IUII			
Contenuto d'acqua	W _o =	28,0	28,3	28,9	%	Limite di liquidità	W _L =	-	%
Massa volumica naturale	ρ =	1,98	1,98	1,90	Mg/m ³	Limite di plasticità	W _P =	-	%
Massa volumica secca	ρ _d =	1,55	1,54	1,48	Mg/m ³				
Indice dei vuoti	e _o =	0,742	0,749	0,827	-	Frazione sabbiosa	=	-	%
Grado di saturazione	S _{ro} =	100,0	100,0	94,4	%	Frazione limosa	=	-	%
Massa volumica dei granuli	ρ_s =	2,7 (\	alore ass	sunto)	Mg/m ³	Frazione argillosa	=	-	%
Dime	ensioni i	niziali pro	ovini						
Provino		1	2	3		Temperatura di p	rova	19	$_{\mathbb{C}}$
Altezza	H ₀	7,62	7,62	7,62	cm				
Sezione	A_0	11,34	11,34	11,34	cm ²	Apparecchiatura	: Pre	essa motorizzata	da 50 kN
Volume	V_0	86,41	86,41	86,41	cm ³				
Velocità di deformazione		0,76	0,76	0,76	mm/min	Connessione pis piastra superiore		con snodo sfe	rico
Pressione di contenimento		100	200	300	kPa				
Osservazioni:					Incerteza	ze di misura e/o ano	malie risco	ontrate:	
Lo Sperimentator	e						II	Direttore	
(Dott. Geol. Angelo F	Ricci)					((Dott. Ged	ol. Renato Ricci)
						-		Mod. CEUU Rev. 05	del 17/03/08

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito

Decreto 8502 del 22/12/2009

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA (UU)

Certificato n°: 3036 del 08/04/2011


Foglio 2 di 2

Verbale Accettaz	ione n°:	00192 del	21/03/2011	Sigla campione:	00613
Committente:	A	Amm.ne Prov.le P	escara	Cantiere:	Istituto Bellisario - Pescara
Sondaggio n°:	ggio n°: S1 Profondità m: 4,7 - 5,3		Data prelievo:	21/03/2011	
Data inizio prova		04/04/20)11	Data fine prova:	05/04/2011

Normativa di riferimento: UNI CEN ISO/TS 17892-8

Procedura di prova Rif. MQ: PQ 13/L

	ino 1	Prov	ino 2		ino 3	
Press	ione di	Press	ione di	Pressione di		
	imento		imento	contenimento		
100	kPa	200	kPa	300	kPa	
ϵ_1	$\sigma_1 - \sigma_3$	ϵ_1	$\sigma_1 - \sigma_3$	ϵ_1	$\sigma_1 - \sigma_3$	
%	kPa	%	kPa	%	kPa	
0,00	0,0	0,00	0,0	0,00	0,0	
0,66	20,2	0,66	11,0	0,66	31,3	
1,31	29,2	1,31	16,4	1,31	43,8	
1,97	36,3	1,97	21,8	1,97	54,4	
2,62	41,5	2,62	26,1	2,62	63,1	
3,28	44,8	3,28	30,4	3,28	71,6	
3,94	48,0	3,94	33,8	3,94	76,5	
4,59	47,7	4,59	37,1	4,59	81,2	
5,25	49,1	5,25	38,6	5,25	85,9	
5,91	50,5	5,91	40,1	5,91	88,8	
6,56	50,2	6,56	41,5	6,56	89,9	
7,22	51,5	7,22	42,9	7,22	91,0	
7,87	51,2	7,87	42,6	7,87	92,1	
8,53	50,8	8,53	44,0	8,53	92,3	
9,19	52,1	9,19	45,4	9,19	92,4	
9,84	51,7	9,84	46,7	9,84	95,1	
10,50	51,4	10,50	48,0	10,50	96,1	
11,15	51,0	11,15	47,7	11,15	95,4	
11,81	50,6	11,81	48,1	11,81	96,3	
12,47	50,2	12,47	48,6	12,47	96,4	
13,12	49,8	13,12	48,2	13,12	94,9	
13,78	49,5	13,78	48,7	13,78	94,1	
14,44	49,1	14,44	48,3	14,44	93,4	
15,09	47,9	15,09	47,1	15,09	92,7	
15,75	47,6	15,75	46,8	15,75	92,0	
-	-	16,40	46,4	-	-	
-	-	17,06	46,1	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	1	
-	-	-	-	-	-	
-	-	-	-	-	1	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	

Schemi di rottura							
Provino 1	Provino 2	Provino 3					

Lo Sperimentatore

(Dott. Geol. Angelo Ricci)

II Direttore

(Dott. Geol. Renato Ricci)

Mod. CEUU Rev 05 del 17/03/08

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

PROVINCIA DI PESCARA

SETTORE VIII Edilizia scolastica, Genio Civile e Patrimonio

Accertamenti strutturali per quadro conoscitivo dell'Istituto Bellisario di Pescara

ELABORAZIONE PROVA MASW (Rapporto di prova n. 105 del 05/04/2011) Revisione del 25/02/2021

INDICE

1.0 PREMESSA	2
2.0 ACQUISIZIONE	
3.0 ELABORAZIONE	

Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 • REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 • www.geotecnicaricci.com • e-mail: info@geotecnicaricci.com

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

1.0 PREMESSA

Nella presente nota si riportano i risultati dell'indagine sismica eseguita su incarico dell'Amministrazione Provinciale di Pescara nell'ambito dei lavori di "Accertamenti strutturali per quadro conoscitivo dell'Istituto Bellisario di Pescara".

Al fine di caratterizzare la risposta sismica del sito in esame è stata effettuata una serie di acquisizioni MASW (Multi-channel Analysis of Surface Waves, analisi della dispersione delle onde di Rayleigh da misure di sismica attiva) utili a definire il profilo verticale della V_S (velocità di propagazione delle onde di taglio).

La procedura MASW utilizzata può sintetizzarsi in tre fasi distinte:

- acquisizione dei dati sperimentali;
- individuazione della curva di dispersione;
- inversione della curva di dispersione per ottenere il profilo verticale delle Vs.

2.0 ACQUISIZIONE

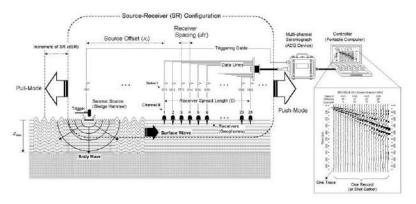


Figura 1: Schema prova MASW

La prova è consistita nell'energizzare, mediante una massa battente del peso di 8 kg, una piastra in acciaio posta direttamente sul p.c. e posizionando 24 geofoni verticali a bassa frequenza (4.5 Hz) secondo la seguente configurazione spaziale e temporale:

• distanza intergeofonica: 2.0 m

• offset minimo: 1.0 m

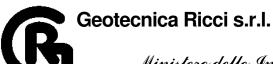
• offset massimo: 3.0 m

durata acquisizione: 1.0 s

• intervallo di campionamento: 0.131 ms

• numero di campioni per traccia: 7651

Il centro dello stendimento ha le seguenti coordinate geografiche (sistema di riferimento: WGS 84):


Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 ● REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 • www.geotecnicaricci.com • e-mail: info@geotecnicaricci.com

Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

Longitudine: 14°12'39.33"E

Latitudine: 42°26'47.47"N

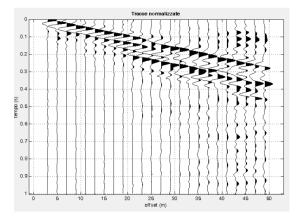


Figura 2: Sismogramma utilizzato per l'elaborazione

Figura 3: Stendimento

3.0 ELABORAZIONE

I dati acquisiti sono stati elaborati (determinazione spettro di velocità, identificazione curve di dispersione, inversione/modellazione di queste ultime) per ricostruire il profilo verticale della velocità delle onde di taglio (VS).

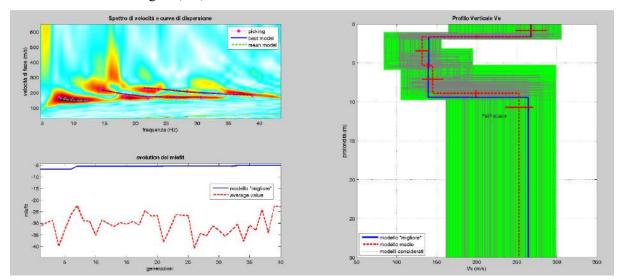
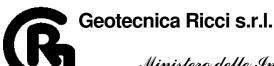
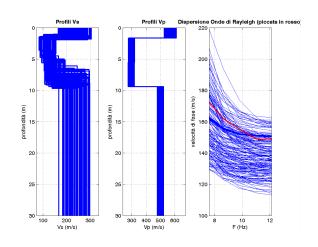


Figura 4: Spettro di velocità, curva di dispersione e relativo profilo verticale di Vs calcolato.


Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 • REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 ● www.geotecnicaricci.com ● e-mail: info@geotecnicaricci.com



Autorizzazione a svolgere attività di prova e certificazione per prove geotecniche sui terreni ed in sito Decreto 8502 del 22/12/2009

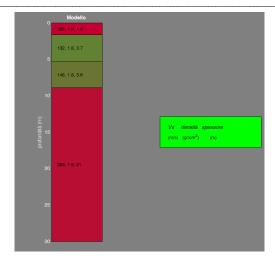


Figura 5: Profilo verticale Vs, VP, curve di dispersione di Figura 6: Colonnina stratigrafica (Vs, densità e Rayleigh.

spessori) relativa al modello medio.

L'analisi della dispersione delle onde di Rayleigh ha consentito di determinare il profilo verticale della V_S (e del modulo di taglio) e, di conseguenza, del parametro V_{S,eq}, risultato per il modello medio pari a

$$V_{S,eq} = V_{S,30} = 211 \text{ m/s}$$

considerando come riferimento il piano campagna.

Nella seguente tabella sono riportati i valori approssimativi dei moduli elastici e della velocità delle onde P (Vp) ed S (Vs) per i singoli strati, che è stato possibile calcolare con il programma di elaborazione.

Modello	medio	Stima approssimativa di Vp, densità e moduli elastici						
Spessori (m)	V _S (m/s)	Vp (m/s)	Densità (g/cm³)	Poisson	Modulo di taglio (Mpa)	Bulk (MPa)	Young (MPa)	Lamè (MPa)
1.6 ± 0.2	268 ± 20	564	1.92	0.35	138	426	373	334
3.7 ± 0.6	132 ± 8	292	1.76	0.37	31	109	84	89
3.6 ± 0.7	145 ± 13	297	1.76	0.34	37	106	99	81
Semi-spazio	253 ± 17	497	1.88	0.33	121	305	320	224

Tabella 1: Valori calcolati dei moduli elastici e delle Vp degli strati

II Direttore

(Dott. Geol. Renato Ricci)

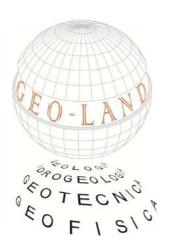
Partita IVA / Codice Fiscale e R.I. 016 69 31 06 80 • REA c/o C.C.I.A.A. di Chieti N. 147419 • Sede Legale e Laboratorio: Via Arenazze, 6/8 66100 CHIETI - Tel./Fax: 0871-321631 ● www.geotecnicaricci.com ● e-mail: info@geotecnicaricci.com

REGIONE ABRUZZO

COMUNE PESCARA

PROVINCIA PESCARA

COMMITTENTE


dott. geol. Martin Pomposo

OGGETTO

Lavori di adeguamento sismico Istituto V. Belisario di Pescara

ELABORATO

Report delle indagini geotecniche

GED LAND

Progetto 36-2021

Revisione 0

File G01_R0_Pomposo_Pescara

DATA Febbraio, 2021

INDICE

- 1.0 PREMESSA
- 2.0 INDAGINI ESEGUITE
- 3.0 STRUMENTAZIONE UTILIZZATA
- 4.0 INDAGINE GEOTECNICA
 - 4.1 Prove penetrometriche dinamiche
 - 4.2 Prelievo campione

ALLEGATI

- Ubicazione indagini
- Prove penetrometriche statiche Tabulati Grafici
- Prove di laboratorio

1.0 PREMESSA

Il rapporto di indagine illustra le modalità e metodologia di esecuzione di una indagine geotecnica eseguita nel comune di Pescara, nell'ambito dei Lavori di adeguamento sismico Istituto V. Belisario di Pescara. Nell'indagine sono state effettuate prove penetrometriche statiche. La presente relazione rappresenta un rapporto tecnico sulle indagini effettuate e costituisce un elaborato specialistico di descrizione delle indagini e dei dati acquisiti.

2.0 INDAGINI ESEGUITE

In relazione al programma d'indagine concordato direttamente con la Direzione Lavori e alla logistica dei luoghi sono state eseguite le seguenti indagini:

Indagine geotecnica

Prove penetrometriche statiche

Codice prova	Profondità m		
CPT 1	35.80*		

^{*}La prova è stata spinta fino al disancoraggio del penetrometro

Prelievo campione

Codice prova	Profondità prelievo m
CPT1-C1	4.00-5.20

^{*}La prova è stata spinta fino al disancoraggio del penetrometro

3.0 STRUMENTAZIONE UTILIZZATA

Per le prove penetrometriche statiche è stato utilizzato un penetrometro della società PAGANI di Caledasco (PC), modello TG 63-200 EML.C., con le seguenti caratteristiche:

Penetrometro statico/dinamico

Modello Pagani TG 63-200 Autoancorante Spinta 20 t Diametro esterno aste 36 mm Lunghezza 1000 Punta meccanica Begemann

Postazione prova CPT1

4.0 INDAGINE GEOTECNICA

4.1 Prove penetrometriche statiche

Le prove CPT sono state eseguite con penetrometro statico munito di un apparato di spinta da 20 Tons, montato su autotelaio cingolato Pagani, opportunamente zavorrato e auto ancorante. Le prove penetrometriche statiche CPT (di tipo meccanico) consiste nella misura della resistenza alla penetrazione di una punta meccanica di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (v = 2 cm/s +- 0.5 cm/s). La penetrazione avviene attraverso un dispositivo di spinta (martinetto idraulico) opportunamente ancorato al suolo (ovvero zavorrato), che agisce su una batteria doppia di aste (aste esterne cave e aste interne piene coassiali), alla cui estremità inferiore è collegata la punta. Lo sforzo necessario per l'infissione viene determinato a mezzo di un opportuno sistema di misura, collegato al martinetto idraulico. La punta conica (tipo telescopico) è dotata di un manicotto sovrastante per la misura dell' attrito laterale (punta/manicotto tipo 'Begemann').

Le dimensioni della punta/manicotto sono standardizzate, e precisamente:

- diametro di base del cono $\emptyset = 35.7 \text{ mm}$
- area della punta conica Ap = 10 cm²
- angolo apertura del cono α = 60°
- superf.laterale manicotto Am = 150 cm².

I valori di resistenza alla punta e del manicotto laterale sono state lette in superficie mediante una centralina elettronica digitale.

Nei diagrammi e tabelle allegate sono riportati i seguenti valori di resistenza (rilevati dalle letture di campagna, durante l'infissione dello strumento):

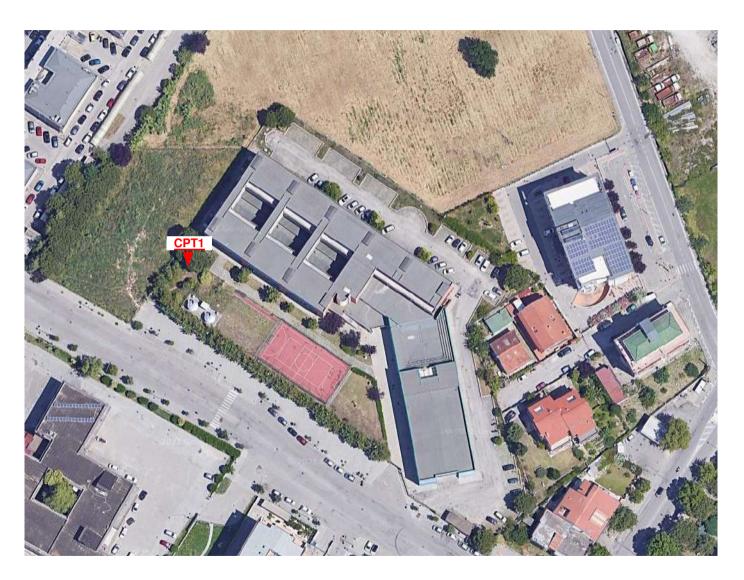
- qc (kg/cm²) = resistenza alla punta(conica)
- fs (kg/cm²) = resistenza laterale (manicotto)

La resistenza alla punta qc e la resistenza laterale fs sono rilevate a intervalli regolari di 20 cm. Le caratteristiche geometriche della punta meccanica utilizzata e le modalità di esecuzione della prova sono in accordo con le raccomandazioni AGI (1997) e con le normative europee di standardizzazione ed in particolare con le normative ISSMFE T.C.P.T. (1988) — Cone Penetration Test (CPT): International Reference Test Procedure e ASTM D 3441-94. Nei certificati di prova sono riportate le caratteristiche punta utilizzata (Begemann) ed i valori misurati in corso della prova.

4.2 Prelievo campione

Il prelievo del campione è stato effettuato con campionatore per terreno DT. 32 Dual Tube. Il campionatore di marca Pagani e tecnologia *Geoprobe* permette di rivestire le pareti del foro completamente a secco togliendo il campionatore dall'interno tramite una batteria di aste. Il terreno viene campionato in fustelle trasparenti ermetiche da 50 mm dando la possibilità di

isolare con i rivestimenti i tratti da campionare. Il campione è stato prelevato tra le profondità 4.00-5.20 m.


Prelievo di campione

Pescara, Febbraio 2021

GEO LAND Sas.

ALLEGATI

UBICAZIONE INDAGINI

LEGENDA

INDAGINE GEOTECNICA

Prova penetrometrica statica con prelievo di campione

Committente: geol. Martin Pomposo Codice prova

Oggetto: Lavori di adeguamento sismico Istituto V.

Belisario di Pescara

Località: Pescara

Data: 16/02/2021

Operatore: geol. Domenicantonio Palucci

CPT 1

Preforo: 0.00 m Quota inizio: p.c. Livello acqua sotterranea rilevata in corso di prova: 2.40 m dal p.c.

Penetrometro Utilizzato

Pagani, Modello TG 63-200

Autoancorante

Spinta 20 t

Diametro esterno aste 36 mm

Lunghezza 1000

Punta meccanica Begemann

Punta meccanica

Caratteristiche:

- punta conica meccanica Ø 35.7 mm, angolo di apertura α= 60 °-(area punta Ap = 10 cm²)

- manicotto laterale di attrito tipo 'Begemann' (Ø 35.7 mm - h 133 mm - sup. lat. Am. = 150 cm²)

- velocità di avanzamento costante $V = 2 \text{ cm/sec.} (\pm 0.5 \text{ cm/sec.})$

- spinta max nominale dello strumento Smax variabile a seconda del tipo

- costante di trasformazione (lett. \Rightarrow Spinta) Ct = SPINTA (Kg) / LETTURA DI CAMPAGNA

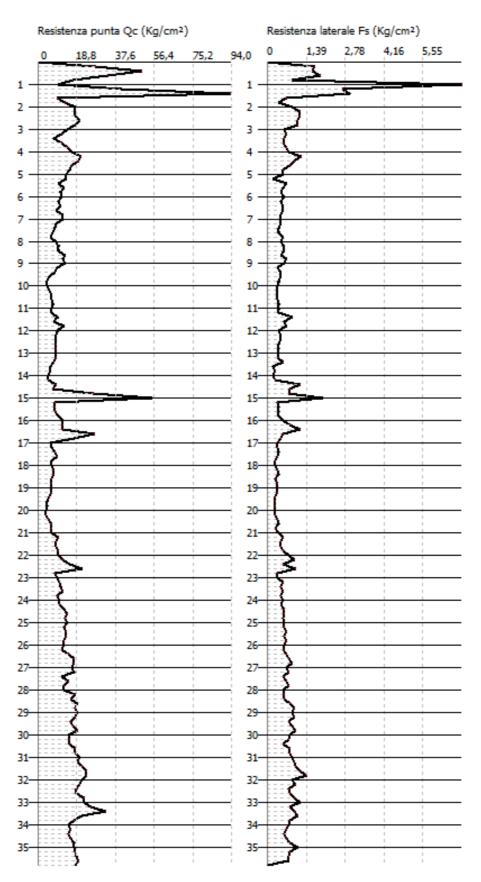
CFO-LAND

PROVA PENETROMETRICA STATICA

DATI RILEVATI

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0,20	28,00	110,0	28,138	1,667	16,879	5,9
0,40	50,00	75,0	50,138	1,6	31,336	3,2
0,60	34,00	58,0	34,138	1,867	18,285	5,5
0,80	17,00	45,0	17,138	0,867	19,767	5,1
1,00	10,00	23,0	10,138	6,933	1,462	68,4
1,20	40,00	144,0	40,276	2,667	15,102	6,6
1,40	93,00	133,0	93,276	2,933	31,802	3,1
1,60	9,00	53,0	9,276	0,667	13,907	7,2
1,80	13,00	23,0	13,276	0,4	33,19	3,0
2,00	18,00	24,0	18,276	0,867	21,08	4,7
2,20	18,00	31,0	18,414	1,133	16,252	6,2
2,40	18,00	35,0	18,414	1,133	16,252	6,2
2,60	20,00	37,0	20,414	1,067	19,132	5,2
2,80	18,00	34,0	18,414	1,067	17,258	5,8
3,00	14,00	30,0	14,414	0,6	24,023	4,2
3,20	11,00	20,0	11,552	0,667	17,319	5,8
3,40	7,00	17,0	7,552	0,6	12,587	7,9
3,60	11,00	20,0	11,552	0,533	21,674	4,6
3,80	14,00	22,0	14,552	0,667	21,817	4,6
4,00	16,00	26,0	16,552	0,733	22,581	4,4
4,20	20,00	31,0	20,69	1,2	17,242	5,8
4,40	19,00	37,0	19,69	0,933	21,104	4,7
4,60	16,00	30,0	16,69	0,8	20,863	4,8
4,80	15,00	27,0	15,69	0,533	29,437	3,4
5,00	13,00	21,0	13,69	0,533	25,685	3,9
5,20	13,00	21,0	13,828	0,2	69,14	1,4
5,40	9,00	12,0	9,828	0,667	14,735	6,8
5,60	12,00	22,0	12,828	0,533	24,068	4,2
5,80	10,00	18,0	10,828	0,467	23,186	4,3
6,00	11,00	18,0	11,828	0,6	19,713	5,1
6,20	9,00	18,0	9,966	0,467	21,34	4,7
6,40	10,00	17,0	10,966	0,533	20,574	4,9
6,60	8,00	16,0	8,966	0,533	16,822	5,9
6,80	11,00	19,0	11,966	0,467	25,623	3,9
7,00	11,00	18,0	11,966	0,467	25,623	3,9
7,20	8,00	15,0	9,104	0,467	19,495	5,1
7,40	7,00	14,0	8,104	0,407	20,26	4,9
7,40	6,00	12,0	7,104	0,4	17,76	5,6
7,80	5,00	11,0	6,104	0,533	11,452	8,7
8,00	8,00	16,0	9,104	0,333	19,495	5,1
8,20	9,00	16,0	10,242	0,407	17,07	5,9
	9,00	18,0	10,242		17,07	
8,40 8,60	12,00	21,0	13,242	0,6 0,467	28,355	5,9 3,5
		18,0	13,242		28,333 18,354	
8,80	11,00		12,242	0,667	•••••	5,4
9,00	12,00	22,0		0,6	22,07	4,5
9,20	8,00	17,0	9,38	0,333	28,168	3,6
9,40	7,00	12,0	8,38	0,467	17,944	5,6
9,60	4,00	11,0	5,38	0,467	11,52	8,7
9,80	3,00	10,0	4,38	0,4	10,95	9,1

10,00	3,00	9,0	4,38	0,333	13,153	7,6
10,20	4,00	9,0	5,518	0,333	16,571	6,0
10,40	5,00	10,0	6,518	0,333	19,574	5,1
10,60	5,00	10,0	6,518	0,333	19,574	5,1
10,80	6,00	11,0	7,518	0,4	18,795	5,3
11,00	5,00	11,0	6,518	0,4	16,295	6,1
11,20	5,00	11,0	6,656	0,4	16,64	6,0
11,40	8,00	14,0	9,656	0,867	11,137	9,0
11,60	6,00	19,0	7,656	0,6	12,76	7,8
11,80	11,00	20,0	12,656	0,667	18,975	5,3
12,00	8,00	18,0	9,656	0,4	24,14	4,1
12,20	7,00	13,0	8,794	0,467	18,831	5,3
12,40	7,00	14,0	8,794	0,467	18,831	5,3
12,60	7,00	14,0	8,794	0,4	21,985	4,5
12,80	7,00	13,0	8,794	0,4	21,985	4,5
13,00	7,00	13,0	8,794	0,4	21,985	4,5
13,20	7,00	13,0	8,932	0,333	26,823	3,7
13,40	6,00	11,0	7,932	0,533	14,882	6,7
13,60	4,00	12,0	5,932	0,2	29,66	3,4
13,80	4,00	7,0	5,932	0,267	22,217	4,5
14,00	3,00	7,0	4,932	0,2	24,66	4,1
14,20	3,00	6,0	5,07	0,267	18,989	5,3
14,40	7,00	11,0	9,07	1,133	8,005	12,5
14,60	5,00	22,0	7,07	0,8	8,838	11,3
14,80	25,00	37,0	27,07	0,733	36,93	2,7
15,00	53,00	64,0	55,07	1,933	28,489	3,5
15,20	6,00	35,0	8,208	0,333	24,649	4,1
15,40	6,00	11,0	8,208	0,4	20,52	4,9
15,60	6,00	12,0	8,208	0,4	20,52	4,9
15,80	8,00	14,0	10,208	0,4	25,52	3,9
16,00	10,00	16,0	12,208	0,533	22,904	4,4
16,20	10,00	18,0	12,346	0,8	15,433	6,5
16,40	10,00	22,0	12,346	1,133	10,897	9,2
16,60	25,00	42,0	27,346	0,533	51,306	1,9
16,80	15,00	23,0	17,346	0,467	37,143	2,7
17,00	4,00	11,0 9,0	6,346	0,333	19,057	5,2
17,20	4,00		6,484 8,484	0,333	19,471	5,1
17,40 17,60	6,00	11,0 13,0	9,484	0,4	21,21 28,48	4,7
	7,00 4,00	9,0	6,484	0,333 0,267	24,285	3,5
17,80	4,00	9,0 8,0	6,484	0,267	24,285	4,1 4,1
18,20	5,00	9,0	7,622	0,333	24,283	4,1
18,40	5,00	10,0	7,622	0,333	19,055	5,2
18,60	4,00	10,0	6,622	0,267	24,801	4,0
18,80	4,00	8,0	6,622	0,333	19,886	5,0
19,00	4,00	9,0	6,622	0,333	19,886	5,0
19,20	4,00	9,0	6,76	0,333	20,3	4,9
19,40	3,00	9,0 8,0	5,76	0,333	21,573	4,6
19,60	2,00	6,0	4,76	0,267	17,828	5,6
19,80	2,00	6,0	4,76	0,267	17,828	5,6
20,00	1,00	5,0	3,76	0,267	14,082	7,1
20,20	1,00	5,0	3,898	0,267	14,599	6,8
20,40	2,00	6,0	4,898	0,333	14,709	6,8
20,60	4,00	9,0	6,898	0,4	17,245	5,8
20,80	4,00	10,0	6,898	0,267	25,835	3,9
,	-,			~, - ~/		- , -

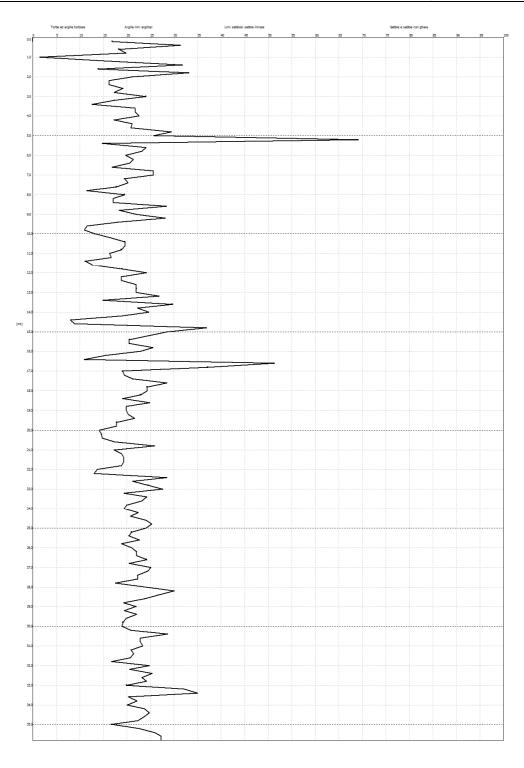

21,00	4,00	8,0	6,898	0,4	17,245	5,8
21,20	7,00	13,0	10,036	0,533	18,829	5,3
21,40	6,00	14,0	9,036	0,467	19,349	5,2
21,60	6,00	13,0	9,036	0,467	19,349	5,2
21,80	7,00	14,0	10,036	0,533	18,829	5,3
22,00	7,00	15,0	10,036	0,733	13,692	7,3
22,20	9,00	20,0	12,174	0,933	13,048	7,7
22,40	12,00	26,0	15,174	0,533	28,469	3,5
22,60	18,00	26,0	21,174	1,0	21,174	4,7
22,80	5,00	20,0	8,174	0,333	24,547	4,1
23,00	6,00	11,0	9,174	0,333	27,55	3,6
23,20	7,00	12,0	10,312	0,533	19,347	5,2
23,40	8,00	16,0	11,312	0,467	24,223	4,1
23,60	9,00	16,0	12,312	0,533	23,099	4,3
23,80	6,00	14,0	9,312	0,467	19,94	5,0
24,00	7,00	14,0	10,312	0,533	19,347	5,2
24,20	7,00	15,0	10,45	0,467	22,377	4,5
24,40	9,00	16,0	12,45	0,6	20,75	4,8
24,60	11,00	20,0	14,45	0,6	24,083	4,2
24,80	10,00	19,0	13,45	0,533	25,235	4,0
25,00	11,00	19,0	14,45	0,6	24,083	4,2
25,20	9,00	18,0	12,588	0,6	20,98	4,8
25,40	10,00	19,0	13,588	0,667	20,372	4,9
25,60	10,00	20,0	13,588	0,6	22,647	4,4
25,80	9,00	18,0	12,588	0,667	18,873	5,3
26,00	9,00	19,0	12,588	0,6	20,98	4,8
26,20	8,00	17,0	11,726	0,533	22,0	4,5
26,40	11,00	19,0	14,726	0,667	22,078	4,5
26,60	14,00	24,0	17,726	0,733	24,183	4,1
26,80	14,00	25,0	17,726	0,867	20,445	4,9
27,00	13,00	26,0	16,726	0,667	25,076	4,0
27,20	14,00	24,0	17,864	0,733	24,371	4,1
27,40	8,00	19,0	11,864	0,533	22,259	4,5
27,60	11,00	19,0	14,864	0,667	22,285	4,5
27,80	9,00	19,0	12,864	0,733	17,55	5,7
28,00	9,00	20,0	12,864	0,533	24,135	4,1
28,20	14,00	22,0	18,002	0,6	30,003	3,3
28,40	12,00	22,0 21,0	16,002	0,6	26,67	3,7
28,60	15,00	24,0	19,002	0,8	23,753	4,2
28,80	14,00	26,0	18,002	0,933	19,295	5,2
29,00	15,00	29,0	19,002	0,867	21,917	4,6
29,20	14,00	27,0	18,14	0,933	19,443	5,1
29,40	12,00	26,0	16,14	0,733	22,019	4,5
29,60	13,00	24,0	17,14	0,867	19,769	5,1
29,80	15,00	28,0	19,14	1,0	19,14	5,2
30,00	11,00	26,0	15,14	0,8	18,925	5,3
30,20	11,00	23,0	15,278	0,733	20,843	4,8
30,40	11,00	22,0	15,278	0,533	28,664	3,5
30,60	14,00	22,0	18,278	0,8	22,848	4,4
30,80	14,00	26,0	18,278	0,8	22,848	4,4
31,00	16,00	28,0	20,278	0,867	23,389	4,3
31,20	15,00	28,0	19,416	0,933	20,81	4,8
31,40	17,00	31,0	21,416	1,0	21,416	4,7
31,60	19,00	34,0	23,416	1,133	20,667	4,8
31,80	19,00	36,0	23,416	1,4	16,726	6,0
	······				•	

32,00	17,00	38,0	21,416	0,867	24,701	4,0
32,20	16,00	29,0	20,554	1,0	20,554	4,9
32,40	14,00	29,0	18,554	0,733	25,312	4,0
32,60	14,00	25,0	18,554	0,8	23,193	4,3
32,80	18,00	30,0	22,554	0,933	24,174	4,1
33,00	18,00	32,0	22,554	1,133	19,906	5,0
33,20	21,00	38,0	25,692	0,8	32,115	3,1
33,40	28,00	40,0	32,692	0,933	35,04	2,9
33,60	17,00	31,0	21,692	1,067	20,33	4,9
33,80	13,00	29,0	17,692	0,8	22,115	4,5
34,00	10,00	22,0	14,692	0,733	20,044	5,0
34,20	11,00	22,0	15,83	0,667	23,733	4,2
34,40	10,00	20,0	14,83	0,6	24,717	4,0
34,60	11,00	20,0	15,83	0,667	23,733	4,2
34,80	13,00	23,0	17,83	0,8	22,288	4,5
35,00	13,00	25,0	17,83	1,067	16,71	6,0
35,20	13,00	29,0	17,968	0,8	22,46	4,5
35,40	14,00	26,0	18,968	0,733	25,877	3,9
35,60	15,00	26,0	19,968	0,733	27,241	3,7
35,80	13,00	24,0	17,968	0,0		0,0

DIAGRAMMA RESISTENZE

VALUTAZIONI LITOLOGICHE

Prof. Strato	qc Media	fs Media	Gamma Medio	Comp. Geotecnico	Descrizione
(m)	(Kg/cm ²)	(Kg/cm ²)	(t/m^3)		
0,20	28,138 50,138	1,667 1,6	2,0	Coesivo Incoerente-Coesivo	Argilla inorganica molto compatta Terre Limo sabbiose - Sabbie Arg
0,60	34,138	1,867	2,1	Coesivo	Limi Argilla inorganica molto compatta
0,80	17,138	0,867	1,9	Coesivo	Argilla inorganica compatta
1,00	10,138	6,933	1,9	Coesivo	Argille organiche e terreni misti
1,20	40,276	2,667	2,1	Coesivo	Argilla inorganica molto compatta
1,40	93,276	2,933	2,2	Incoerente-Coesivo	Terre Limo sabbiose - Sabbie Arg Limi
1,60	9,276	0,667	1,8	Coesivo	Argille organiche e terreni misti
1,80	13,276	0,4	1,9	Incoerente-Coesivo	Argille sabbiose e limose
2,00	18,276	0,867	2,0	Coesivo	Argilla inorganica compatta
2,80	18,914	1,1	2,0	Coesivo	Argilla inorganica molto compatta
3,20	12,983	0,6335	1,9	Coesivo	Argilla inorganica compatta
3,40	7,552	0,6	1,8	Coesivo	Argille organiche e terreni misti
4,00	14,21867	0,644333	1,9	Coesivo	Argilla inorganica compatta
4,20	20,69	1,2	2,0	Coesivo	Argilla inorganica molto compatta
4,60	18,19	0,8665	1,9	Coesivo	Argilla inorganica compatta
5,00	14,69	0,533	1,9	Incoerente-Coesivo	Argille sabbiose e limose
5,20	13,828	0,2	1,8	Incoerente	Sabbie Sciolte
5,40	9,828	0,667	1,8	Coesivo	Argille organiche e terreni misti
5,60	12,828	0,533	1,9	Coesivo	Argilla inorganica compatta
5,80	10,828	0,467	1,9	Coesivo	Argilla inorganica di media consistenza
6,00	11,828	0,6	1,9	Coesivo	Argilla inorganica compatta
6,20	9,966	0,467	1,8	Coesivo	Argilla inorganica di media consistenza
6,40	10,966	0,533	1,9	Coesivo	Argilla inorganica compatta
6,60	8,966	0,533	1,8	Coesivo	Argille organiche e terreni misti
7,40	10,285	0,45025	1,8	Coesivo	Argilla inorganica di media consistenza
7,80	6,604	0,4665	1,7	Coesivo	Argille organiche e terreni misti
8,00	9,104	0,467	1,8	Coesivo	Argilla inorganica di media consistenza
8,40	10,242	0,6	1,8	Coesivo	Argilla inorganica compatta
8,60	13,242	0,467	1,9	Incoerente-Coesivo	Argille sabbiose e limose
9,00	12,742	0,6335	1,9	Coesivo	Argilla inorganica compatta
9,20	9,38	0,333	1,8	Incoerente-Coesivo	Argille sabbiose e limose
9,40	8,38	0,467	1,8	Coesivo	Argilla inorganica di media consistenza
10,20	4,9145	0,38325	1,7	Coesivo	Argille organiche e terreni misti
10,80	6,851334	0,355333	1,7	Coesivo	Argilla inorganica di media consistenza
11,60	7,6215	0,56675	1,8	Coesivo	Argille organiche e terreni misti
11,80	12,656	0,667	1,9	Coesivo	Argilla inorganica compatta
13,20	8,936856	0,409571	1,8	Coesivo	Argilla inorganica di media consistenza
13,40	7,932	0,533	1,8	Coesivo	Argille organiche e terreni misti
13,60	5,932	0,2	1,7	Coesivo	Argilla inorganica tenera
13,80	5,932	0,267	1,7	Coesivo	Argilla inorganica di media consistenza
14,00	4,932	0,2	1,6	Coesivo	Argilla inorganica tenera
14,60	7,07	0,733333	1,7	Coesivo	Argille organiche e terreni misti


Geo-Land sas di Palucci D. & C Via Tirino, 82 – 65129 Pescara Tel 3395462037; paluccidomenico@gmail.com

15,00	41,07	1,333	2,1	Incoerente-Coesivo	Terre Limo sabbiose - Sabbie Arg
15,80	8,708	0,38325	1,8	Coesivo	Limi Argilla inorganica di media
16,00	12,208	0,533	1,8	Coesivo	consistenza
16,40	12,208	0,9665	1,8	Coesivo	Argilla inorganica compatta Argille organiche e terreni misti
16,60	27,346	0,533	1,9	Incoerente	Sabbie
			·		Terre Limo sabbiose - Sabbie Arg
16,80	17,346	0,467	1,9	Incoerente-Coesivo	Limi Argilla inorganica di media
17,40	7,104666	0,355333	1,7	Coesivo	consistenza
17,60	9,484	0,333	1,8	Incoerente-Coesivo	Argille sabbiose e limose
19,40	6,733112	0,311111	1,7	Coesivo	Argilla inorganica di media consistenza
20,60	4,829	0,300167	1,4	Coesivo	Argille organiche e terreni misti
20,80	6,898	0,267	1,7	Coesivo	Argilla inorganica di media consistenza
21,00	6,898	0,4	1,7	Coesivo	Argille organiche e terreni misti
21,20	10,036	0,533	1,8	Coesivo	Argilla inorganica compatta
21,60	9,036	0,467	1,7	Coesivo	Argilla inorganica di media consistenza
21,80	10,036	0,533	1,8	Coesivo	Argilla inorganica compatta
22,20	11,105	0,833	1,8	Coesivo	Argille organiche e terreni misti
22,40	15,174	0,533	1,9	Incoerente-Coesivo	Argille sabbiose e limose
22,60	21,174	1,0	1,9	Coesivo	Argilla inorganica molto compatta
23,00	8,674	0,333	1,7	Coesivo	Argilla inorganica di media consistenza
23,20	10,312	0,533	1,8	Coesivo	Argilla inorganica compatta
23,40	11,312	0,467	1,8	Coesivo	Argilla inorganica di media consistenza
23,60	12,312	0,533	1,8	Coesivo	Argilla inorganica compatta
23,80	9,312	0,467	1,7	Coesivo	Argilla inorganica di media consistenza
24,00	10,312	0,533	1,8	Coesivo	Argilla inorganica compatta
					Argilla inorganica di media
24,20	10,45	0,467	1,8	Coesivo	consistenza
26,40	13,29018	0,606091	1,8	Coesivo	Argilla inorganica compatta
26,60	17,726	0,733	1,9	Incoerente-Coesivo	Argille sabbiose e limose
26,80	17,726	0,867	1,9	Coesivo	Argilla inorganica compatta
27,20	17,295	0,7	1,9	Incoerente-Coesivo	Argille sabbiose e limose
28,00	13,114	0,6165	1,8	Coesivo	Argilla inorganica compatta
28,60	17,66867	0,666667	1,9	Incoerente-Coesivo	Argille sabbiose e limose
29,60	17,6848	0,8666	1,9	Coesivo	Argilla inorganica compatta
29,80	19,14	1,0	1,9	Coesivo	Argilla inorganica molto compatta
30,20	15,209	0,7665	1,9	Coesivo	Argilla inorganica compatta
30,40	15,278	0,533	1,9	Incoerente-Coesivo	Argille sabbiose e limose
30,80	18,278	0,8	1,9	Coesivo	Argilla inorganica compatta
31,00	20,278	0,867	1,9	Incoerente-Coesivo	Argille sabbiose e limose
31,20	19,416	0,933	1,9	Coesivo	Argilla inorganica compatta
31,80	22,74933	1,177667	1,9	Coesivo	Argilla inorganica molto compatta
32,00	21,416	0,867	1,9	Incoerente-Coesivo	Argille sabbiose e limose
32,20	20,554	1,0	1,9	Coesivo	Argilla inorganica molto compatta
32,40	18,554	0,733	1,9	Incoerente-Coesivo	Argille sabbiose e limose
32,60	18,554	0,8	1,9	Coesivo	Argilla inorganica compatta
32,80	22,554	0,933	1,9	Incoerente-Coesivo	Argille sabbiose e limose
33,00	22,554 29,192	1,133 0,8665	1,9 2,0	Coesivo Incoerente-Coesivo	Argilla inorganica molto compatta Terre Limo sabbiose - Sabbie Arg Limi
	•			••••	LIIII

-	33,60	21,692	1,067	1,9	Coesivo	Argilla inorganica molto compatta
	34,80	16,11733	0,711167	1,9	Coesivo	Argilla inorganica compatta
	35,00	17,83	1,067	1,9	Coesivo	Argilla inorganica molto compatta
	35,20	17,968	0,8	1,9	Coesivo	Argilla inorganica compatta
	35,60	19,468	0,733	1,9	Incoerente-Coesivo	Argille sabbiose e limose

STIMA PARAMETRI GEOTECNICI

TERRENI COESIVI

Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Peso unità di volume (t/m³) Meyerhof	Ocr Piacentini Righi 1978	Cu (Kg/cm²) Terzaghi	Eed (Kg/cm²) Metodo generale del modulo	Eu (Kg/cm²) Cancelli 1980	Modulo di deformazione a taglio (Kg/cm²) Imai & Tomauchi
0,20	28,138	1,667	2,0	>9	1,4	56,3	1054,4	215,1
0,40	50,138	1,6	2,1	>9	2,5	100,3	1877,9	306,2
0,60	34,138	1,867	2,1	>9	1,7	68,3	1276,3	242,1
0,80	17,138	0,867	1,9	>9	0,9	47,0	637,3	158,9
1,00	10,138	6,933	1,9	>9	0,5	43,8	373,4	115,3
1,20	40,276	2,667	2,1	>9	2,0	80,6	1502,1	267,8
1,40	93,276	2,933	2,2	>9	4,7	186,5	3487,9	447,4
1,60	9,276	0,667	1,8	>9	0,5	41,9	336,4	109,2
1,80	13,276	0,4	1,9	8,47	0,7	48,0	485,1	135,9
2,00	18,276	0,867	2,0	>9	0,9	45,5	671,1	165,3
2,80	18,914	1,1	2,0	>9	1,0	44,3	691,3	168,8
3,20	12,983	0,6335	1,9	7,58	0,7	47,8	464,4	134,1
3,40	7,552	0,6	1,8	6,55	0,4	37,1	258,7	96,3
4,00	14,21867	0,644333	1,9	6,3	0,7	48,4	505,9	141,8
4,20	20,69	1,2	2,0	>9	1,0	41,4	745,7	178,3
4,60	18,19	0,8665	1,9	7,12	0,9	45,6	649,7	164,8
5,00	14,69	0,533	1,9	4,01	0,7	48,4	515,6	144,6
5,40	9,828	0,667	1,8	4,57	0,5	43,2	329,8	113,1
5,60	12,828	0,533	1,9	3,51	0,6	47,7	441,0	133,1
5,80	10,828	0,467	1,9	2,96	0,5	45,1	364,5	120,0
6,00	11,828	0,6	1,9	3,69	0,6	46,6	400,6	126,7
6,20	9,966	0,467	1,8	2,76	0,5	43,5	329,4	114,1
6,40	10,966	0,533	1,9	3,06	0,6	45,4	365,5	121,0
6,60	8,966	0,533	1,8	2,97	0,5	41,1	289,1	107,0
7,40	10,285	0,45025	1,8	2,32	0,5	44,1	335,2	116,3
7,80	6,604	0,4665	1,7	2,22	0,3	33,8	193,2	88,7
8,00	9,104	0,467	1,8	2,15	0,5	41,5	285,0	108,0

Geo-Land sas di Palucci D. & C

Via Tirino, 82 – 65129 Pescara Tel 3395462037; paluccidomenico@gmail.com

8,40	10,242	0,6	1,8	2,68	0,5	44,0	325,6	116,0
8,60	13,242	0,467	1,9	1,99	0,7	48,0	436,1	135,7
9,00	12,742	0,6335	1,9	2,63	0,6	47,6	415,2	132,6
9,20	9,38	0,333	1,8	1,3	0,5	42,2	287,0	109,9
9,40	8,38	0,467	1,8	1,81	0,4	39,6	248,2	102,6
10,20	4,9145	0,38325	1,7	1,4	0,3	27,0	115,0	74,1
10,80	6,851334	0,355333	1,7	1,2	0,3	34,7	183,2	90,7
11,60	7,6215	0,56675	1,8	1,85	0,4	37,3	207,4	96,8
11,80	12,656	0,667	1,9	2,09	0,6	47,5	392,8	132,0
13,20	8,936856	0,409571	1,8	1,17	0,5	41,1	247,9	106,7
13,40	7,932	0,533	1,8	1,45	0,4	38,2	204,8	99,2
13,60	5,932	0,2	1,7	0,53	0,3	31,3	128,5	83,1
13,80	5,932	0,267	1,7	0,69	0,3	31,3	127,2	83,1
14,00	4,932	0,2	1,6	0,51	0,3	27,1	88,5	74,2
14,60	7,07	0,733333	1,7	1,88	0,4	35,5	166,2	92,5
15,00	41,07	1,333	2,1	3,34	2,1	82,1	1437,7	271,0
15,80	8,708	0,38325	1,8	0,88	0,4	40,5	219,8	105,1
16,00	12,208	0,533	1,8	1,2	0,6	47,1	347,7	129,2
16,40	12,346	0,9665	1,8	2,19	0,6	47,2	350,8	130,0
16,80	17,346	0,467	1,9	0,98	0,9	46,8	534,9	160,1
17,40	7,104666	0,355333	1,7	0,74	0,4	35,6	148,2	92,8
17,60	9,484	0,333	1,8	0,68	0,5	42,4	234,8	110,7
19,40	6,733112	0,311111	1,7	0,6	0,3	34,3	125,3	89,8
20,60	4,829	0,300167	1,5	0,54	0,2	26,7	45,0	73,3
20,80	6,898	0,267	1,7	<0.5	0,3	34,9	118,8	91,1
21,00	6,898	0,4	1,7	0,69	0,3	34,9	117,5	91,1
21,20	10,036	0,533	1,8	0,91	0,5	43,6	233,9	114,6
21,60	9,036	0,467	1,7	0,79	0,5	41,3	194,4	107,5
21,80	10,036	0,533	1,8	0,88	0,5	43,6	230,0	114,6
22,20	11,105	0,833	1,8	1,39	0,6	45,6	268,0	121,9
22,40	15,174	0,533	1,9	0,86	0,8	48,4	418,5	147,5
22,60	21,174	1,0	1,9	1,64	1,1	42,3	642,1	180,8
23,00	8,674	0,333	1,7	0,53	0,4	40,4	171,4	104,8
23,20	10,312	0,533	1,8	0,83	0,5	44,2	230,9	116,5
23,40	11,312	0,467	1,8	0,72	0,6	45,9	267,0	123,3

Geo-Land sas di Palucci D. & C Via Tirino, 82 – 65129 Pescara Tel 3395462037; paluccidomenico@gmail.com

23,60	12,312	0,533	1,8	0,82	0,6	47,2	303,2	129,8
23,80	9,312	0,467	1,7	0,71	0,5	42,0	189,3	109,5
24,00	10,312	0,533	1,8	0,8	0,5	44,2	225,5	116,5
24,20	10,45	0,467	1,8	0,7	0,5	44,4	229,3	117,4
26,40	13,29018	0,606091	1,8	0,86	0,7	48,0	327,8	136,0
26,60	17,726	0,733	1,9	0,99	0,9	46,3	486,0	162,2
26,80	17,726	0,867	1,9	1,17	0,9	46,3	484,5	162,2
27,20	17,295	0,7	1,9	0,92	0,9	46,9	466,2	159,8
28,00	13,114	0,6165	1,8	0,8	0,7	47,9	305,3	134,9
28,60	17,66867 (0,666667	1,9	0,84	0,9	46,4	471,3	161,9
29,60	17,6848	0,8666	1,9	1,06	0,9	46,4	466,2	162,0
29,80	19,14	1,0	1,9	1,2	1,0	43,9	516,5	170,0
30,20	15,209	0,7665	1,9	0,9	0,8	48,4	366,9	147,7
30,40	15,278	0,533	1,9	0,63	0,8	48,3	367,4	148,1
30,80	18,278	0,8	1,9	0,92	0,9	45,5	477,8	165,3
31,00	20,278	0,867	1,9	0,99	1,0	41,3	550,6	176,1
31,20	19,416	0,933	1,9	1,06	1,0	43,3	516,9	171,5
31,80	22,74933	1,177667	1,9	1,34	1,1	45,5	639,0	188,9
32,00	21,416	0,867	1,9	0,95	1,1	42,8	586,2	182,1
32,20	20,554	1,0	1,9	1,1	1,0	41,1	552,4	177,6
32,40	18,554	0,733	1,9	0,8	0,9	45,0	476,0	166,8
32,60	18,554	0,8	1,9	0,87	0,9	45,0	474,6	166,8
32,80	22,554	0,933	1,9	1	1,1	45,1	623,1	187,9
33,00	22,554	1,133	1,9	1,22	1,1	45,1	621,7	187,9
33,40	29,192	0,8665	2,0	0,91	1,5	58,4	868,4	220,0
33,60	21,692	1,067	1,9	1,12	1,1	43,4	585,0	183,5
34,80	16,11733	0,711167	1,9	0,73	0,8	47,9	370,9	153,0
35,00	17,83	1,067	1,9	1,07	0,9	46,2	430,2	162,8
35,20	17,968	0,8	1,9	0,8	0,9	45,9	433,9	163,6
35,60	19,468	0,733	1,9	0,73	1,0	43,2	488,0	171,8

Cu: coesione non drenata; Eed: modulo edometrico; Eu: modulo di deformazione non drenato;

M: modulo di deformazione a taglio

TERRENI INCOERENTI

Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Peso unità di volume (t/m³) Meyerhof	Densità relativa (%)	Angolo d'attrito (°) Schmertmann	Modulo di Young (Kg/cm²) Schmertmann	Modulo Edometrico (Kg/cm²) Buisman - Sanglerat	G (Kg/cm²) Imai & Tomauchi
0,40	50,138	1,6	1,8	<5	42,0	125,3	75,2	306,2
1,40	93,276	2,933	1,8	<5	42,0	233,2	139,9	447,4
1,80	13,276	0,4	1,8	<5	31,6	33,2	66,4	135,9
5,00	14,69	0,533	1,8	<5	28,7	36,7	73,5	144,6
5,20	13,828	0,2	1,9	<5	28,7	34,6	69,1	139,4
8,60	13,242	0,467	1,8	<5	28,7	33,1	66,2	135,7
9,20	9,38	0,333	1,8	<5	28,7	23,5	75,0	109,9
15,00	41,07	1,333	1,8	< 5	29,6	102,7	123,2	271,0
16,60	27,346	0,533	1,8	<5	28,7	68,4	136,7	211,4
16,80	17,346	0,467	1,8	<5	28,7	43,4	86,7	160,1
17,60	9,484	0,333	1,8	<5	28,7	23,7	75,9	110,7
22,40	15,174	0,533	1,8	<5	28,7	37,9	75,9	147,5
26,60	17,726	0,733	1,8	< 5	28,7	44,3	88,6	162,2
27,20	17,295	0,7	1,8	<5	28,7	43,2	86,5	159,8
28,60	17,66867	0,666667	1,8	<5	28,7	44,2	88,3	161,9
30,40	15,278	0,533	1,8	<5	28,7	38,2	76,4	148,1
31,00	20,278	0,867	1,8	<5	28,7	50,7	101,4	176,1
32,00	21,416	0,867	1,8	< 5	28,7	53,5	107,1	182,1
32,40	18,554	0,733	1,8	<5	28,7	46,4	92,8	166,8
32,80	22,554	0,933	1,8	<5	28,7	56,4	112,8	187,9
33,40	29,192	0,8665	1,8	< 5	28,7	73,0	146,0	220,0
35,60	19,468	0,733	1,8	<5	28,7	48,7	97,3	171,8

Data: 22/02/2021 Rapporto n°:7040221

RIFERIMI	ENTI COMMES	SA	INFORMAZIONI GENERALI SUL CAMPIONE IN INGRESSO					
Il Richiedente: Dott. G	eol. Pomposo I	Martin	Alterazioni Esterne:	1 1				
Verbale di Accettazione N	N°: 040221	Data: 18/02/2021	Ditta che ha ef	fettuato	o il prelievo			
Riferimento Ordine N	1 °:	Data:			Non Dichiarato			

INTESTAZIONE CERTIFICATO ED IDENTIFICAZIONE CAMPIONE									
Committente: Provincia di Pescara									
Cantiere:	Cantiere: Lavori di adeguamento sismico Istituto V. Bellisario di Pescara								
Sondaggio: CPT1 Campione: 1 Profondità da m: 4,00 a m: 5,20									

TRACCIA	BILITA'
Codice Campione:	MP11
Consegna Campione:	17/02/2021
Apertura:	18/02/2021
Inizio Prove:	18/02/2021
Fine Prove:	22/02/2021

ESCLUSIONI / ANOMALIE / DIFFORMITA' / NOTE									
Non Riscrontrate									

PROVE ESEGUITE	ID PROVA	PAG.	NORMATIVE DI RIFERIMENTO
Descrizione Macroscopica e Caratteristiche Fisiche	MP11DeMaCaFi	2	Raccomandazioni sulle prove geotecniche di laboratorio - AGI,1994 Classificazione delle terre: ASTM D 2487-85 D3282-83
Granulometria Secca+Umida	MP11Aeo	3	Raccomandazioni AGI 1997
	Totale Pag.	3	

Lo Spetimentatore Dott.Geol. Legoini Manila

Il Direttore Dott. Geol. Luca Di Matteo

File Name: 7040221.pdf 1/3 Data di Stampa: 22/02/2021

Rapporto N°:	Committente: Provincia di Pescara	Consegna:	17/02/2021	Sondaggio:	CPT1
7040221		Apertura:	18/02/2021	Campione:	1
Data:	Cantiere: Lavori di adeguamento sismico Istituto V. Bellisario di Pescara	Inizio Prova:	18/02/2021	da mt:	4,00
22/02/2021		Fine Prova:	22/02/2021	a mt:	5,20

	DESCRIZIONE CAMPIONE										
Lunghezza:	50	cm.	Diametro:	8,5	cm.	Classe di Qualità:	Non Dichiarata				
Descrizione M	Descrizione Macroscopica: Limo argilloso di colore grigio chiaro - olivastro (5/2 5Y) Presenta alcuni piccoli clasti e tracce di residui carboniosi.										

	CARATTERISTICHE FISICHE DEL CAMPIONE (1)										
Peso Specifico (2):	2,7	g/cm³	Limite del ritiro:	-	%	Contenuto Naturale Acqua:	-	%			
Densità Naturale:	-	g/cm³	Limite Liquido:	-	%	Grado di Saturazione:	-	%			
Densità secca:	-	g/cm³	Limite Plastico:	-	%	Indice di Attività:	-				
Densità satura:	-	g/cm³	Porosità:	-	%	Indice dei Vuoti:	-				

Indice di Plasticità IP	: -						
Indice di Consistenza IC: -							
Grado di Plasticità:	-						
Stato:							
Class. Granulometrica (M.I.T.) Argilla con Limo							
Class. Granulometric	ca (USCS):						

cm.	Resistenza Pocket Kg/cm²	Resist. Vanetest Kg/cm²	Consistenza	Collocazione Prove Meccaniche
10	-			
20	-			
30	-			
40	-			
50	-			
60	-			

- (1) Valori Medi dei dati ottenuti nelle singoli prove.
- (2) Ove non specificatamente richiesto, viene assegnato un peso specifico di 2,7 g/cm³.

File Name: 7040221.pdf 2/3 Data di Stampa: 22/02/2021

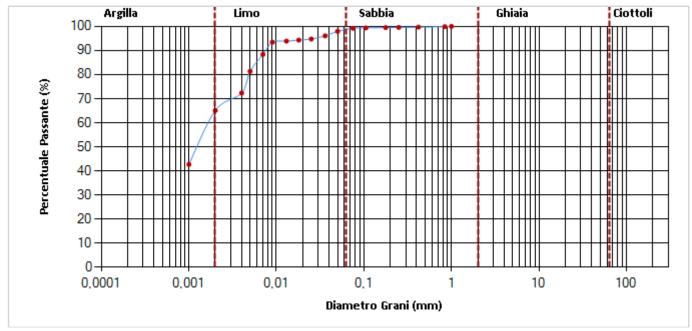
Rapporto N°:	Committente: Provincia di Pescara	Consegna:	17/02/2021	Sondaggio:	CPT1
7040221		Apertura:	18/02/2021	Campione:	1
Data:	Cantiere: Lavori di adeguamento sismico Istituto V. Bellisario di Pescara	Inizio Prova:	18/02/2021	da mt:	4,00
22/02/2021		Fine Prova:	22/02/2021	a mt:	5,20

ANALISI GRANULOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE GRANULOMETRICHE

Ciottoli %	0	Ghiaia %	0	Sabbia %	1,1	Limo %	33,8	Argilla % 65,1	
D10 (mm)	-	D30 (mm)	0,0004	D50 (mm)	0,0013	D60 (mm)	0,0018	Coeffic. di Uniformita	-
Passante Setaccio 200 (%):			99,210	Peso Netto To	otale (g):		52,83	Diametro Max (mm)	0,84


CLASSIFICAZIONE

USCS:

AGI / ASTM: Argilla con Limo

	VAGLIATURA										SEDIMEN	ITAZIONI	E
Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Diametro (mm)	Passante (%)	Diametro (mm)	Passante (%)
4"	101,5				20	0,84	0,07	0,13	99,87	0,05	97,93	0,007	88,32
2"	50,5				35	0,5				0,036	96,05	0,005	81,33
1"	25,4				40	0,42	0,1	0,19	99,68	0,025	94,74	0,004	72,32
1/2"	12,7				60	0,25	0,06	0,11	99,57	0,018	94,3	0,002	65,11
3/8"	9,5				80	0,177	0,04	0,08	99,49	0,013	93,88	0,001	42,73
4	4,76				140	0,105	0,08	0,15	99,34	0,009	93,44		
10	2				200	0,075	0,07	0,13	99,21				
18	1				230	0,063							

CURVA GRANULOMETRICA

N. Commmessa: 040221

Provincia di Pescara Committente:

Data: 18/02/2021

Lavori di adeguamento sismico Istituto V. Bellisario di Pescara Cantiere:

			_
EDO Ed	Min: Max	Mpa	
	Cu operat.	Кра	
TRX CD / CU	ф	o	
	,)	Кра	
TRX	Cu	Кра	
E.L.L.	no	Кра	
TAGLIO RESIDUO	ф	۰	
TAG RESI	C	Кра	
TAGLIO	ф	٥	
IMITI GRANULOMETRIA TAG	,)	Кра	
	Α	%	65,1
	7	%	33,8 65,1
	S	%	1,1
	9	%	
	ΓΡ	%	
רווע	717	%	
	۲s	g/cm³	2,7
	۲n	g/cm³ g/cm³ %	
	>	%	
POCKET P.	Min/ Max Kg/cm²	Da / A	
		Profondità m.	4-5,2
O e E	a	с a	CP 1
Norpamio			